# include <vector>
# include <string>
# include <limits>
# include <cstdio>
# include <stdexcept> // std::runtime_error
# include <opencv2/opencv.hpp> // all opencv header
# include "hdrplus/align.h"
# include "hdrplus/burst.h"
# include "hdrplus/utility.h"
namespace hdrplus
{
// static function only visible within file
static void build_per_grayimg_pyramid ( \
std : : vector < cv : : Mat > & images_pyramid , \
const cv : : Mat & src_image , \
const std : : vector < int > & inv_scale_factors )
{
# ifndef NDEBUG
printf ( " %s::%s build_per_grayimg_pyramid start with scale factor : " , __FILE__ , __func__ ) ;
for ( int i = 0 ; i < inv_scale_factors . size ( ) ; + + i )
{
printf ( " %d " , inv_scale_factors . at ( i ) ) ;
}
printf ( " \n " ) ;
# endif
images_pyramid . resize ( inv_scale_factors . size ( ) ) ;
cv : : Mat blur_image ;
cv : : Mat downsample_image ;
for ( int i = 0 ; i < inv_scale_factors . size ( ) ; + + i )
{
printf ( " inv scale factor %d \n " , inv_scale_factors . at ( i ) ) ;
switch ( inv_scale_factors [ i ] )
{
case 1 :
images_pyramid [ images_pyramid . size ( ) - i - 1 ] = src_image ;
// cv::Mat use reference count, will not create deep copy
downsample_image = src_image ;
break ;
case 2 :
printf ( " gaussian blur 2 start \n " ) ; fflush ( stdout ) ;
// Gaussian blur
cv : : GaussianBlur ( downsample_image , blur_image , cv : : Size ( 0 , 0 ) , inv_scale_factors [ i ] / 2 ) ;
printf ( " gaussian blur 2 done \n " ) ; fflush ( stdout ) ;
// Downsample
downsample_image = downsample_nearest_neighbour < uint16_t , 2 > ( blur_image ) ;
// Add
images_pyramid [ images_pyramid . size ( ) - i - 1 ] = downsample_image ;
break ;
case 4 :
printf ( " gaussian blur 4 start \n " ) ; fflush ( stdout ) ;
cv : : GaussianBlur ( downsample_image , blur_image , cv : : Size ( 0 , 0 ) , inv_scale_factors [ i ] / 2 ) ;
printf ( " gaussian blur 4 done \n " ) ; fflush ( stdout ) ;
downsample_image = downsample_nearest_neighbour < uint16_t , 4 > ( blur_image ) ;
images_pyramid [ images_pyramid . size ( ) - i - 1 ] = downsample_image ;
break ;
default :
throw std : : runtime_error ( " inv scale factor " + std : : to_string ( inv_scale_factors [ i ] ) + " invalid " ) ;
}
printf ( " downsample size h=%d w=%d \n " , \
downsample_image . size ( ) . height , downsample_image . size ( ) . width ) ; fflush ( stdout ) ;
}
}
template < int stride >
static void upsample_alignment_stride ( \
std : : vector < std : : vector < std : : pair < int , int > > > & src_alignment , \
std : : vector < std : : vector < std : : pair < int , int > > > & dst_alignment )
{
int src_height = src_alignment . size ( ) ;
int src_width = src_alignment [ 0 ] . size ( ) ;
int dst_height = src_height * stride ;
int dst_width = src_width * stride ;
// Allocate data for dst_alignment
dst_alignment . resize ( dst_height , std : : vector < std : : pair < int , int > > ( dst_width ) ) ;
// Upsample alignment
for ( int row_i = 0 ; row_i < src_height ; row_i + + )
{
for ( int col_i = 0 ; col_i < src_width ; col_i + + )
{
// Scale alignment
std : : pair < int , int > align_i = src_alignment [ row_i ] [ col_i ] ;
align_i . first * = stride ;
align_i . second * = stride ;
// repeat
for ( int stride_row_i = 0 ; stride_row_i < stride ; + + stride_row_i )
{
for ( int stride_col_i = 0 ; stride_col_i < stride ; + + stride_col_i )
{
dst_alignment [ row_i + stride_row_i ] [ col_i + stride_col_i ] = align_i ;
}
}
}
}
}
template < typename T >
void print_tile ( const cv : : Mat & img , int tile_size , int start_idx_x , int start_idx_y )
{
const T * img_ptr = ( T * ) img . data ;
int src_height = img . size ( ) . height ;
int src_width = img . size ( ) . width ;
int src_step = img . step1 ( ) ;
for ( int row = 0 ; row < tile_size ; + + row )
{
const T * img_ptr_row = img_ptr + row * src_step ;
for ( int col = 0 ; col < tile_size ; + + col )
{
printf ( " %d " , img_ptr_row [ col ] ) ;
}
printf ( " \n " ) ;
}
printf ( " \n " ) ;
}
void align_image_level ( \
const cv : : Mat & ref_img , \
const cv : : Mat & alt_img , \
const std : : vector < std : : vector < std : : pair < int , int > > > & reftiles_start , \
std : : vector < std : : vector < std : : pair < int , int > > > & prev_aligement , \
std : : vector < std : : vector < std : : pair < int , int > > > & alignment , \
int scale_factor_prev_curr , \
int tile_size , \
int prev_tile_size , \
int search_radiou , \
int distance )
{
# ifndef NDEBUG
printf ( " %s::%s align_image_level : " , __FILE__ , __func__ ) ;
printf ( " scale_factor_prev_curr %d, tile_size %d, prev_tile_size %d, search_radiou %d, distance %d " , \
scale_factor_prev_curr , tile_size , prev_tile_size , search_radiou , distance ) ;
printf ( " \n " ) ;
# endif
/* Basic infos */
int num_tiles_h = reftiles_start . size ( ) ;
int num_tiles_w = reftiles_start . at ( 0 ) . size ( ) ;
printf ( " num tile h %d, num tile w %d \n " , num_tiles_h , num_tiles_w ) ;
/* Upsample pervious layer alignment */
std : : vector < std : : vector < std : : pair < int , int > > > upsampled_prev_aligement ;
// Coarsest level
// prev_alignment is invalid / empty, construct alignment as (0,0)
if ( prev_tile_size = = - 1 )
{
upsampled_prev_aligement . resize ( num_tiles_h , std : : vector < std : : pair < int , int > > ( num_tiles_w , std : : pair < int , int > ( 0 , 0 ) ) ) ;
}
// Upsample previous level alignment
else
{
if ( scale_factor_prev_curr = = 2 )
{
// TODO: add choose from 3 neighbour
upsample_alignment_stride < 2 > ( prev_aligement , upsampled_prev_aligement ) ;
}
else if ( scale_factor_prev_curr = = 4 )
{
// TODO: add choose from 3 neighbour
upsample_alignment_stride < 4 > ( prev_aligement , upsampled_prev_aligement ) ;
}
else
{
throw std : : runtime_error ( " Invalid scale factor " + std : : to_string ( scale_factor_prev_curr ) ) ;
}
}
/* Pad alternative image */
cv : : Mat alt_img_pad ;
cv : : copyMakeBorder ( alt_img , \
alt_img_pad , \
search_radiou , search_radiou , search_radiou , search_radiou , \
cv : : BORDER_CONSTANT , cv : : Scalar ( UINT_LEAST16_MAX ) ) ;
/* Iterate through all reference tile & compute distance */
for ( int ref_tile_row = 0 ; ref_tile_row < num_tiles_h ; ref_tile_row + + )
{
for ( int ref_tile_col = 0 ; ref_tile_col < num_tiles_w ; ref_tile_col + + )
{
// Upper left index of reference tile
int ref_tile_idx_x = reftiles_start . at ( ref_tile_row ) . at ( ref_tile_col ) . first ;
int ref_tile_idx_y = reftiles_start . at ( ref_tile_row ) . at ( ref_tile_col ) . second ;
// Upsampled alignment at this tile
// int prev_alignment_x = upsampled_prev_aligement.at( ref_tile_row ).at( ref_tile_col ).first;
// int prev_alignment_y = upsampled_prev_aligement.at( ref_tile_row ).at( ref_tile_col ).second;
// int alt_tile_idx_x = ref_tile_idx_x + prev_alignment_x;
// int alt_tile_idx_y = ref_tile_idx_y + prev_alignment_y;
printf ( " Ref img tile [%d, %d] \n " , ref_tile_row , ref_tile_col ) ;
print_tile < uint16_t > ( ref_img , 8 , ref_tile_idx_x , ref_tile_idx_y ) ;
}
}
}
static void build_per_pyramid_reftiles_start ( \
std : : vector < std : : vector < std : : vector < std : : pair < int , int > > > > & per_pyramid_reftiles_start , \
const std : : vector < std : : vector < cv : : Mat > > & per_grayimg_pyramid , \
const std : : vector < int > & grayimg_tile_sizes )
{
per_pyramid_reftiles_start . resize ( per_grayimg_pyramid . at ( 0 ) . size ( ) ) ;
// Every image pyramid level
for ( int level_i = 0 ; level_i < per_grayimg_pyramid . at ( 0 ) . size ( ) ; level_i + + )
{
int level_i_img_h = per_grayimg_pyramid . at ( 0 ) . at ( level_i ) . size ( ) . height ;
int level_i_img_w = per_grayimg_pyramid . at ( 0 ) . at ( level_i ) . size ( ) . width ;
int level_i_tile_size = grayimg_tile_sizes . at ( level_i ) ;
int num_tiles_h = level_i_img_h / ( level_i_tile_size / 2 ) - 1 ;
int num_tiles_w = level_i_img_w / ( level_i_tile_size / 2 ) - 1 ;
// Allocate memory
per_pyramid_reftiles_start . at ( level_i ) . resize ( num_tiles_h , std : : vector < std : : pair < int , int > > ( num_tiles_w ) ) ;
for ( int tile_col_i = 0 ; tile_col_i < num_tiles_h ; tile_col_i + + )
{
for ( int tile_row_j = 0 ; tile_row_j < num_tiles_w ; tile_row_j + + )
{
per_pyramid_reftiles_start . at ( level_i ) . at ( tile_col_i ) . at ( tile_row_j ) \
= std : : make_pair < int , int > ( tile_col_i * level_i_tile_size , tile_row_j * level_i_tile_size ) ;
}
}
}
}
void align : : process ( const hdrplus : : burst & burst_images , \
std : : vector < std : : vector < std : : vector < std : : pair < int , int > > > > & images_alignment )
{
# ifndef NDEBUG
printf ( " %s::%s align::process start \n " , __FILE__ , __func__ ) ;
# endif
// image pyramid per image, per pyramid level
std : : vector < std : : vector < cv : : Mat > > per_grayimg_pyramid ;
per_grayimg_pyramid . resize ( burst_images . num_images ) ;
for ( int img_idx = 0 ; img_idx < burst_images . num_images ; + + img_idx )
{
// per_grayimg_pyramid[ img_idx ][ 0 ] is the original image
// per_grayimg_pyramid[ img_idx ][ 3 ] is the coarsest image
build_per_grayimg_pyramid ( per_grayimg_pyramid . at ( img_idx ) , \
burst_images . grayscale_images_pad . at ( img_idx ) , \
this - > inv_scale_factors ) ;
}
# ifndef NDEBUG
printf ( " %s::%s build image pyramid of size : " , __FILE__ , __func__ ) ;
for ( int level_i = 0 ; level_i < num_levels ; + + level_i )
{
printf ( " (%d, %d) " , per_grayimg_pyramid [ 0 ] [ level_i ] . size ( ) . height ,
per_grayimg_pyramid [ 0 ] [ level_i ] . size ( ) . width ) ;
}
printf ( " \n " ) ;
# endif
// Tile starting location for each tile level
std : : vector < std : : vector < std : : vector < std : : pair < int , int > > > > per_pyramid_reftiles_start ;
build_per_pyramid_reftiles_start ( \
per_pyramid_reftiles_start , \
per_grayimg_pyramid , \
grayimg_tile_sizes ) ;
// Align every image
const std : : vector < cv : : Mat > & ref_grayimg_pyramid = per_grayimg_pyramid [ burst_images . reference_image_idx ] ;
for ( int img_idx = 0 ; img_idx < burst_images . num_images ; + + img_idx )
{
// Do not align with reference image
if ( img_idx = = burst_images . reference_image_idx )
continue ;
const std : : vector < cv : : Mat > & alt_grayimg_pyramid = per_grayimg_pyramid [ img_idx ] ;
// Align every level from coarse to grain
// level 0 : finest level, the original image
// level 3 : coarsest level
std : : vector < std : : vector < std : : pair < int , int > > > curr_alignment ;
std : : vector < std : : vector < std : : pair < int , int > > > prev_alignment ;
for ( int level_i = num_levels - 1 ; level_i > = 0 ; level_i - - )
{
align_image_level (
ref_grayimg_pyramid [ level_i ] , // reference image at current level
alt_grayimg_pyramid [ level_i ] , // alternative image at current level
per_pyramid_reftiles_start [ level_i ] , // reference tile start location for current level
prev_alignment , // previous layer alignment
curr_alignment , // current layer alignment
( level_i = = ( num_levels - 1 ) ? - 1 : inv_scale_factors [ level_i ] ) , // scale factor between previous layer and current layer. -1 if current layer is the coarsest layer
grayimg_tile_sizes [ level_i ] , // current level tile size
( level_i = = ( num_levels - 1 ) ? - 1 : grayimg_tile_sizes [ level_i + 1 ] ) , // previous level tile size
grayimg_search_radious [ level_i ] , // search radious
distances [ level_i ] ) ; // L1/L2 distance
// make curr alignment as previous alignment
prev_alignment . swap ( curr_alignment ) ;
curr_alignment . clear ( ) ;
break ;
} // for pyramid level
} // for alternative image
}
} // namespace hdrplus