You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

125 lines
4.3 KiB
C

3 years ago
#pragma once
#include <string>
#include <stdexcept> // std::runtime_error
#include <opencv2/opencv.hpp> // all opencv header
// TODO: add openmp support
namespace hdrplus
{
template <typename T>
3 years ago
cv::Mat box_filter_2x2( const cv::Mat& src_image )
3 years ago
{
// https://stackoverflow.com/questions/34042112/opencv-mat-data-member-access
const T* src_image_ptr = (T*)src_image.data;
int src_height = src_image.size().height;
int src_width = src_image.size().width;
int src_step = src_image.step1();
if ( src_height % 2 != 0 || src_width % 2 != 0 )
{
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of 2\n" );
}
cv::Mat dst_image( src_height / 2, src_width / 2, src_image.type() );
T* dst_image_ptr = (T*)dst_image.data;
int dst_step = dst_image.step1();
// -03 should be enough to optimize below code
for ( int row_i = 0; row_i < src_height; row_i += 2 )
{
for ( int col_i = 0; col_i < src_width; col_i += 2 )
{
T box_sum = src_image_ptr[ ( row_i + 0 ) * src_step + col_i + 0 ] + \
src_image_ptr[ ( row_i + 0 ) * src_step + col_i + 1 ] + \
src_image_ptr[ ( row_i + 1 ) * src_step + col_i + 0 ] + \
src_image_ptr[ ( row_i + 1 ) * src_step + col_i + 1 ];
T box_avg = ( box_sum + T(3) ) / 4; // take ceiling
dst_image_ptr[ ( row_i / 2 ) * dst_step + ( col_i / 2 ) ] = box_avg;
}
}
// cv::Mat internally use reference count. Will not copy by value here
return dst_image;
}
3 years ago
template <typename T, int kernel>
cv::Mat box_filter_kxk( cv::Mat src_image )
{
const T* src_image_ptr = (T*)src_image.data;
int src_height = src_image.size().height;
int src_width = src_image.size().width;
int src_step = src_image.step1();
if ( src_height % kernel != 0 || src_width % kernel != 0 )
{
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of kernel\n" );
}
cv::Mat dst_image( src_height / kernel, src_width / kernel, src_image.type() );
T* dst_image_ptr = (T*)dst_image.data;
int dst_step = dst_image.step1();
// -03 should be enough to optimize below code
for ( int row_i = 0; row_i < src_height; row_i += kernel )
{
for ( int col_i = 0; col_i < src_width; col_i += kernel )
{
T box_sum = T(0);
#pragma GCC unroll kernel
for ( int kernel_row_i = 0; kernel_row_i < kernel; ++kernel_row_i )
{
#pragma GCC unroll kernel
for ( int kernel_col_i = 0; kernel_col_i < kernel; ++kernel_col_i )
{
box_sum += src_image_ptr[ ( row_i + kernel_row_i ) * src_step + ( col_i + kernel_col_i ) ];
}
}
T box_avg = ( box_sum + T( kernel * kernel - 1 ) ) / ( kernel * kernel ); // take ceiling
dst_image_ptr[ ( row_i / kernel ) * dst_step + ( col_i / kernel ) ] = box_avg;
}
}
// cv::Mat internally use reference count. Will not copy by value here
return dst_image;
}
template <typename T, int kernel>
cv::Mat downsample_nearest_neighbour( cv::Mat src_image )
{
const T* src_image_ptr = (T*)src_image.data;
int src_height = src_image.size().height;
int src_width = src_image.size().width;
int src_step = src_image.step1();
if ( src_height % kernel != 0 || src_width % kernel != 0 )
{
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of kernel size\n" );
}
cv::Mat dst_image( src_height / kernel, src_width / kernel, src_image.type() );
T* dst_image_ptr = (T*)dst_image.data;
int dst_step = dst_image.step1();
// -03 should be enough to optimize below code
for ( int row_i = 0; row_i < src_height; row_i += kernel )
{
for ( int col_i = 0; col_i < src_width; col_i += kernel )
{
dst_image_ptr[ ( row_i / kernel ) * dst_step + ( col_i / kernel ) ] = \
src_image_ptr[ row_i * src_step + col_i ];
}
}
// cv::Mat internally use reference count. Will not copy by value here
return dst_image;
}
cv::Mat gaussian_blur( cv::Mat src_image, double sigma );
3 years ago
} // namespace hdrplus