# include <opencv2/opencv.hpp> // all opencv header
# include <vector>
# include <utility>
# include "hdrplus/merge.h"
# include "hdrplus/burst.h"
# include "hdrplus/utility.h"
namespace hdrplus
{
void merge : : process ( hdrplus : : burst & burst_images , \
std : : vector < std : : vector < std : : vector < std : : pair < int , int > > > > & alignments )
{
// 4.1 Noise Parameters and RMS
// Noise parameters calculated from baseline ISO noise parameters
double lambda_shot , lambda_read ;
std : : tie ( lambda_shot , lambda_read ) = burst_images . bayer_images [ burst_images . reference_image_idx ] . get_noise_params ( ) ;
// 4.2-4.4 Denoising and Merging
// Get padded bayer image
cv : : Mat reference_image = burst_images . bayer_images_pad [ burst_images . reference_image_idx ] ;
cv : : imwrite ( " ref.jpg " , reference_image ) ;
// Get raw channels
std : : vector < cv : : Mat > channels ( 4 ) ;
hdrplus : : extract_rgb_fmom_bayer < uint16_t > ( reference_image , channels [ 0 ] , channels [ 1 ] , channels [ 2 ] , channels [ 3 ] ) ;
std : : vector < cv : : Mat > processed_channels ( 4 ) ;
// For each channel, perform denoising and merge
for ( int i = 0 ; i < 4 ; + + i ) {
// Get channel mat
cv : : Mat channel_i = channels [ i ] ;
cv : : imwrite ( " ref " + std : : to_string ( i ) + " .jpg " , channel_i ) ;
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
//create list of channel_i of alternate images:
std : : vector < cv : : Mat > alternate_channel_i_list ;
for ( int j = 0 ; j < burst_images . num_images ; j + + ) {
if ( j ! = burst_images . reference_image_idx ) {
//get alternate image
cv : : Mat alt_image = burst_images . bayer_images_pad [ j ] ;
std : : vector < cv : : Mat > alt_channels ( 4 ) ;
hdrplus : : extract_rgb_fmom_bayer < uint16_t > ( alt_image , alt_channels [ 0 ] , alt_channels [ 1 ] , alt_channels [ 2 ] , alt_channels [ 3 ] ) ;
alternate_channel_i_list . push_back ( alt_channels [ i ] ) ;
}
}
// Apply merging on the channel
cv : : Mat merged_channel = processChannel ( burst_images , alignments , channel_i , alternate_channel_i_list , lambda_shot , lambda_read ) ;
cv : : imwrite ( " merged " + std : : to_string ( i ) + " .jpg " , merged_channel ) ;
// Put channel raw data back to channels
merged_channel . convertTo ( processed_channels [ i ] , CV_16U ) ;
}
// Write all channels back to a bayer mat
cv : : Mat merged ( reference_image . rows , reference_image . cols , CV_16U ) ;
int x , y ;
for ( y = 0 ; y < reference_image . rows ; + + y ) {
uint16_t * row = merged . ptr < uint16_t > ( y ) ;
if ( y % 2 = = 0 ) {
uint16_t * i0 = processed_channels [ 0 ] . ptr < uint16_t > ( y / 2 ) ;
uint16_t * i1 = processed_channels [ 1 ] . ptr < uint16_t > ( y / 2 ) ;
for ( x = 0 ; x < reference_image . cols ; ) {
//R
row [ x ] = i0 [ x / 2 ] ;
x + + ;
//G1
row [ x ] = i1 [ x / 2 ] ;
x + + ;
}
}
else {
uint16_t * i2 = processed_channels [ 2 ] . ptr < uint16_t > ( y / 2 ) ;
uint16_t * i3 = processed_channels [ 3 ] . ptr < uint16_t > ( y / 2 ) ;
for ( x = 0 ; x < reference_image . cols ; ) {
//G2
row [ x ] = i2 [ x / 2 ] ;
x + + ;
//B
row [ x ] = i3 [ x / 2 ] ;
x + + ;
}
}
}
// Remove padding
std : : vector < int > padding = burst_images . padding_info_bayer ;
cv : : Range horizontal = cv : : Range ( padding [ 2 ] , reference_image . cols - padding [ 3 ] ) ;
cv : : Range vertical = cv : : Range ( padding [ 0 ] , reference_image . rows - padding [ 1 ] ) ;
burst_images . merged_bayer_image = merged ( vertical , horizontal ) ;
cv : : imwrite ( " merged.jpg " , burst_images . merged_bayer_image ) ;
}
std : : vector < cv : : Mat > merge : : getReferenceTiles ( cv : : Mat reference_image ) {
std : : vector < cv : : Mat > reference_tiles ;
for ( int y = 0 ; y < reference_image . rows - offset ; y + = offset ) {
for ( int x = 0 ; x < reference_image . cols - offset ; x + = offset ) {
cv : : Mat tile = reference_image ( cv : : Rect ( x , y , TILE_SIZE , TILE_SIZE ) ) ;
reference_tiles . push_back ( tile ) ;
}
}
return reference_tiles ;
}
cv : : Mat merge : : mergeTiles ( std : : vector < cv : : Mat > tiles , int num_rows , int num_cols ) {
// 1. get all four subsets: original (evenly split), horizontal overlapped,
// vertical overlapped, 2D overlapped
std : : vector < std : : vector < cv : : Mat > > tiles_original ;
for ( int y = 0 ; y < num_rows / offset - 1 ; y + = 2 ) {
std : : vector < cv : : Mat > row ;
for ( int x = 0 ; x < num_cols / offset - 1 ; x + = 2 ) {
row . push_back ( tiles [ y * ( num_cols / offset - 1 ) + x ] ) ;
}
tiles_original . push_back ( row ) ;
}
std : : vector < std : : vector < cv : : Mat > > tiles_horizontal ;
for ( int y = 0 ; y < num_rows / offset - 1 ; y + = 2 ) {
std : : vector < cv : : Mat > row ;
for ( int x = 1 ; x < num_cols / offset - 1 ; x + = 2 ) {
row . push_back ( tiles [ y * ( num_cols / offset - 1 ) + x ] ) ;
}
tiles_horizontal . push_back ( row ) ;
}
std : : vector < std : : vector < cv : : Mat > > tiles_vertical ;
for ( int y = 1 ; y < num_rows / offset - 1 ; y + = 2 ) {
std : : vector < cv : : Mat > row ;
for ( int x = 0 ; x < num_cols / offset - 1 ; x + = 2 ) {
row . push_back ( tiles [ y * ( num_cols / offset - 1 ) + x ] ) ;
}
tiles_vertical . push_back ( row ) ;
}
std : : vector < std : : vector < cv : : Mat > > tiles_2d ;
for ( int y = 1 ; y < num_rows / offset - 1 ; y + = 2 ) {
std : : vector < cv : : Mat > row ;
for ( int x = 1 ; x < num_cols / offset - 1 ; x + = 2 ) {
row . push_back ( tiles [ y * ( num_cols / offset - 1 ) + x ] ) ;
}
tiles_2d . push_back ( row ) ;
}
// 2. Concatenate the four subsets
cv : : Mat img_original = cat2Dtiles ( tiles_original ) ;
cv : : Mat img_horizontal = cat2Dtiles ( tiles_horizontal ) ;
cv : : Mat img_vertical = cat2Dtiles ( tiles_vertical ) ;
cv : : Mat img_2d = cat2Dtiles ( tiles_2d ) ;
// 3. Add the four subsets together
img_original ( cv : : Rect ( offset , 0 , num_cols - TILE_SIZE , num_rows ) ) + = img_horizontal ;
img_original ( cv : : Rect ( 0 , offset , num_cols , num_rows - TILE_SIZE ) ) + = img_vertical ;
img_original ( cv : : Rect ( offset , offset , num_cols - TILE_SIZE , num_rows - TILE_SIZE ) ) + = img_2d ;
return img_original ;
}
cv : : Mat merge : : processChannel ( hdrplus : : burst & burst_images , \
std : : vector < std : : vector < std : : vector < std : : pair < int , int > > > > & alignments , \
cv : : Mat channel_image , \
std : : vector < cv : : Mat > alternate_channel_i_list , \
float lambda_shot , \
float lambda_read ) {
// Get tiles of the reference image
std : : vector < cv : : Mat > reference_tiles = getReferenceTiles ( channel_image ) ;
// Get noise variance (sigma**2 = lambda_shot * tileRMS + lambda_read)
std : : vector < float > noise_variance = getNoiseVariance ( reference_tiles , lambda_shot , lambda_read ) ;
// Apply FFT on reference tiles (spatial to frequency)
std : : vector < cv : : Mat > reference_tiles_DFT ;
for ( auto ref_tile : reference_tiles ) {
cv : : Mat ref_tile_DFT ;
ref_tile . convertTo ( ref_tile_DFT , CV_32F ) ;
cv : : dft ( ref_tile_DFT , ref_tile_DFT , cv : : DFT_SCALE | cv : : DFT_COMPLEX_OUTPUT ) ;
reference_tiles_DFT . push_back ( ref_tile_DFT ) ;
}
// TODO: 4.2 Temporal Denoising
//std::vector<cv::Mat> temporal_denoised_tiles = temporal_denoise(reference_tiles, reference_tiles_DFT, noise_varaince)
// TODO: 4.3 Spatial Denoising
////adding after here
std : : vector < cv : : Mat > spatial_denoised_tiles = spatial_denoise ( reference_tiles_DFT , alternate_channel_i_list . size ( ) , noise_variance , 0.1 ) ;
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
// reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
////
reference_tiles_DFT = spatial_denoised_tiles ;
// Apply IFFT on reference tiles (frequency to spatial)
std : : vector < cv : : Mat > denoised_tiles ;
for ( auto dft_tile : reference_tiles_DFT ) {
cv : : Mat denoised_tile ;
cv : : dft ( dft_tile , denoised_tile , cv : : DFT_INVERSE | cv : : DFT_REAL_OUTPUT ) ;
denoised_tile . convertTo ( denoised_tile , CV_16U ) ;
denoised_tiles . push_back ( denoised_tile ) ;
}
reference_tiles = denoised_tiles ;
// 4.4 Cosine Window Merging
// Process tiles through 2D cosine window
std : : vector < cv : : Mat > windowed_tiles ;
for ( auto tile : reference_tiles ) {
windowed_tiles . push_back ( cosineWindow2D ( tile ) ) ;
}
// Merge tiles
return mergeTiles ( windowed_tiles , channel_image . rows , channel_image . cols ) ;
}
std : : vector < cv : : Mat > temporal_denoise ( std : : vector < cv : : Mat > tiles , std : : vector < cv : : Mat > alt_imgs , std : : vector < float > noise_variance , float temporal_factor ) {
//goal: temporially denoise using the weiner filter
//input:
//1. array of 2D dft tiles of the reference image
//2. array of 2D dft tiles ocf the aligned alternate image
//3. estimated noise varaince
//4. temporal factor
//return: merged image patches dft
//tile_size = TILE_SIZE;
//start calculating the merged image tiles fft
//get the tiles of the alternate image as a list
std : : vector < std : : vector < cv : : Mat > > alternate_channel_i_tile_list ; //list of alt channel tiles
std : : vector < std : : vector < cv : : Mat > > alternate_tiles_DFT_list ; //list of alt channel tiles
for ( auto alt_img_channel : alternate_channel_i_list ) {
std : : vector < uint16_t > alt_img_channel_tile = getReferenceTiles ( alt_img_channel ) ; //get tiles from alt image
alternate_channel_i_tile_list . push_back ( alt_img_channel_tile )
std : : vector < cv : : Mat > alternate_tiles_DFT ;
for ( auto alt_tile : alt_img_channel_tile ) {
cv : : Mat alt_tile_DFT ;
alt_tile . convertTo ( alt_tile_DFT , CV_32F ) ;
cv : : dft ( alt_tile_DFT , alt_tile_DFT , cv : : DFT_SCALE | cv : : DFT_COMPLEX_OUTPUT ) ;
alternate_tiles_DFT . push_back ( alt_tile_DFT ) ;
}
alternate_tiles_DFT_list . push_back ( alternate_tiles_DFT ) ;
}
//get the dft of the alternate image
//std::vector<cv::Mat> alternate_tiles_DFT;
//std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
//find reference_tiles_DFT - alternate_tiles_DFT_list
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
// tile_difference_list.push_back(single_tile_difference);
// }
// //find the squared absolute difference across all the tiles
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// std::vector<cv::Mat> copy_diff = tile_differences.clone(); //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
//get the real and imaginary components (real**2 + imag**2)
// std::vector<cv::Mat> absolute_distance_list;
// for (auto individual_difference : tile_difference_list) {
// cv::Mat copy_diff = individual_difference.clone();
// for (int i = 0 ; i < individual_difference.rows; i++ ) {
// //std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
// for (int j = 0; j < individual_difference.cols*individual_difference.channels(); j++) {
// std::complex<double> single_complex_num = individual_difference.at<std::complex<double>>(i,j);
// copy_diff.at<std::complex<double>>(i,j) = math.pow(single_complex_num.real(),2)+math.pow(single_complex_num.imag(),2); //.real and .imag
// }
// }
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
// absolute_distance_list.push_back(copy_diff);
// }
//get shrinkage operator
//std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
//std::vector<cv::Mat> A;
//get tile_sq_asolute_diff+noise_variance
// std::vector<cv::Mat> A_denominator;
// for (int i = 0; i < absolute_distance_list.size();i++){
// cv::Mat noise_var_mat( noise_variance[i],absolute_distance_list[i].rows,absolute_distance_list[i].cols,CV_16U);
// cv::Mat single_denominator = absolute_distance_list[i] + noise_var_mat;
// A_denominator.push_back(single_denominator);
// }
// for (auto individual_distance : absolute_distance_list) {
// cv::Mat single_A =
// }
//std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
//calculate noise scaling
double temporal_factor = 8.0 //8 by default
double temporal_noise_scaling = ( pow ( TILE_SIZE , 2 ) * ( 1.0 / 16 * 2 ) ) * temporal_factor ;
//loop across tiles
// Calculate absolute difference
for ( int i = 0 ; i < tiles . size ( ) ; + + i ) {
cv : : Mat tile = tiles [ i ] ;
//float coeff = noise_variance[i] / num_alts * spatial_noise_scaling;
// Calculate absolute difference
cv : : Mat complexMats [ 2 ] ;
cv : : split ( tile , complexMats ) ; // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv : : magnitude ( complexMats [ 0 ] , complexMats [ 1 ] , complexMats [ 0 ] ) ; // planes[0] = magnitude
cv : : Mat absolute_diff = complexMats [ 0 ] . mul ( complexMats [ 0 ] ) ;
//find shrinkage operator A
//create a mat of only the noise variance
cv : : Mat noise_var_mat ( noise_variance [ i ] * temporal_noise_scaling , absolute_diff . rows , absolute_diff . cols , CV_16U ) ;
cv : : Mat A_denom = absolute_diff + noise_var_mat ;
cv : : Mat A = cv : : divide ( absolute_diff , A_denom ) ;
//update reference DFT
reference_tiles_DFT + = alternate_tiles_DFT_list + cv : : mul ( A , absolute_diff ) ;
}
//get average
reference_tiles_DFT = cv : : divide ( reference_tiles_DFT , tiles . size ( ) )
return reference_tiles_DFT
}
std : : vector < cv : : Mat > merge : : spatial_denoise ( std : : vector < cv : : Mat > tiles , int num_alts , std : : vector < float > noise_variance , float spatial_factor ) {
double spatial_noise_scaling = ( ( 1.0 / 16 ) ) * spatial_factor ;
// Calculate |w| using ifftshift
cv : : Mat row_distances = cv : : Mat : : zeros ( 1 , TILE_SIZE , CV_32F ) ;
for ( int i = 0 ; i < TILE_SIZE ; + + i ) {
row_distances . at < float > ( i ) = i - offset ;
}
row_distances = cv : : repeat ( row_distances . t ( ) , 1 , TILE_SIZE ) ;
cv : : Mat col_distances = row_distances . t ( ) ;
cv : : Mat distances ;
cv : : sqrt ( row_distances . mul ( row_distances ) + col_distances . mul ( col_distances ) , distances ) ;
ifftshift ( distances ) ;
std : : vector < cv : : Mat > denoised ;
// Loop through all tiles
for ( int i = 0 ; i < tiles . size ( ) ; + + i ) {
cv : : Mat tile = tiles [ i ] ;
float coeff = noise_variance [ i ] / ( num_alts + 1 ) * spatial_noise_scaling ;
// Calculate absolute difference
cv : : Mat complexMats [ 2 ] ;
cv : : split ( tile , complexMats ) ; // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv : : magnitude ( complexMats [ 0 ] , complexMats [ 1 ] , complexMats [ 0 ] ) ; // planes[0] = magnitude
cv : : Mat absolute_diff = complexMats [ 0 ] . mul ( complexMats [ 0 ] ) ;
// Division
cv : : Mat scale ;
cv : : divide ( absolute_diff , absolute_diff + distances * coeff , scale ) ;
cv : : merge ( std : : vector < cv : : Mat > { scale , scale } , scale ) ;
denoised . push_back ( tile . mul ( scale ) ) ;
}
return denoised ;
}
} // namespace hdrplus