|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <stdexcept> // std::runtime_error
|
|
|
|
#include <opencv2/opencv.hpp> // all opencv header
|
|
|
|
// TODO: add openmp support
|
|
|
|
|
|
|
|
#if defined(__clang__)
|
|
|
|
#define LOOP_UNROLL unroll
|
|
|
|
#elif defined(__GNUC__) || defined(__GNUG__)
|
|
|
|
#define LOOP_UNROLL GCC unroll
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
#define LOOP_UNROLL unroll
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace hdrplus
|
|
|
|
{
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
cv::Mat box_filter_2x2( const cv::Mat& src_image )
|
|
|
|
{
|
|
|
|
// https://stackoverflow.com/questions/34042112/opencv-mat-data-member-access
|
|
|
|
const T* src_image_ptr = (T*)src_image.data;
|
|
|
|
int src_height = src_image.size().height;
|
|
|
|
int src_width = src_image.size().width;
|
|
|
|
int src_step = src_image.step1();
|
|
|
|
|
|
|
|
if ( src_height % 2 != 0 || src_width % 2 != 0 )
|
|
|
|
{
|
|
|
|
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of 2\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat dst_image( src_height / 2, src_width / 2, src_image.type() );
|
|
|
|
T* dst_image_ptr = (T*)dst_image.data;
|
|
|
|
int dst_step = dst_image.step1();
|
|
|
|
|
|
|
|
// -03 should be enough to optimize below code
|
|
|
|
for ( int row_i = 0; row_i < src_height; row_i += 2 )
|
|
|
|
{
|
|
|
|
for ( int col_i = 0; col_i < src_width; col_i += 2 )
|
|
|
|
{
|
|
|
|
T box_sum = src_image_ptr[ ( row_i + 0 ) * src_step + col_i + 0 ] + \
|
|
|
|
src_image_ptr[ ( row_i + 0 ) * src_step + col_i + 1 ] + \
|
|
|
|
src_image_ptr[ ( row_i + 1 ) * src_step + col_i + 0 ] + \
|
|
|
|
src_image_ptr[ ( row_i + 1 ) * src_step + col_i + 1 ];
|
|
|
|
T box_avg = ( box_sum + T(3) ) / 4; // take ceiling
|
|
|
|
dst_image_ptr[ ( row_i / 2 ) * dst_step + ( col_i / 2 ) ] = box_avg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// cv::Mat internally use reference count. Will not copy by value here
|
|
|
|
return dst_image;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, int kernel>
|
|
|
|
cv::Mat box_filter_kxk( cv::Mat src_image )
|
|
|
|
{
|
|
|
|
const T* src_image_ptr = (T*)src_image.data;
|
|
|
|
int src_height = src_image.size().height;
|
|
|
|
int src_width = src_image.size().width;
|
|
|
|
int src_step = src_image.step1();
|
|
|
|
|
|
|
|
if ( src_height % kernel != 0 || src_width % kernel != 0 )
|
|
|
|
{
|
|
|
|
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of kernel\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat dst_image( src_height / kernel, src_width / kernel, src_image.type() );
|
|
|
|
T* dst_image_ptr = (T*)dst_image.data;
|
|
|
|
int dst_step = dst_image.step1();
|
|
|
|
|
|
|
|
// -03 should be enough to optimize below code
|
|
|
|
for ( int row_i = 0; row_i < src_height; row_i += kernel )
|
|
|
|
{
|
|
|
|
for ( int col_i = 0; col_i < src_width; col_i += kernel )
|
|
|
|
{
|
|
|
|
T box_sum = T(0);
|
|
|
|
|
|
|
|
//#pragma LOOP_UNROLL
|
|
|
|
for ( int kernel_row_i = 0; kernel_row_i < kernel; ++kernel_row_i )
|
|
|
|
{
|
|
|
|
//#pragma LOOP_UNROLL
|
|
|
|
for ( int kernel_col_i = 0; kernel_col_i < kernel; ++kernel_col_i )
|
|
|
|
{
|
|
|
|
box_sum += src_image_ptr[ ( row_i + kernel_row_i ) * src_step + ( col_i + kernel_col_i ) ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
T box_avg = ( box_sum + T( kernel * kernel - 1 ) ) / ( kernel * kernel ); // take ceiling
|
|
|
|
dst_image_ptr[ ( row_i / kernel ) * dst_step + ( col_i / kernel ) ] = box_avg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// cv::Mat internally use reference count. Will not copy by value here
|
|
|
|
return dst_image;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int kernel>
|
|
|
|
cv::Mat downsample_nearest_neighbour( cv::Mat src_image )
|
|
|
|
{
|
|
|
|
const T* src_image_ptr = (T*)src_image.data;
|
|
|
|
int src_height = src_image.size().height;
|
|
|
|
int src_width = src_image.size().width;
|
|
|
|
int src_step = src_image.step1();
|
|
|
|
|
|
|
|
if ( src_height % kernel != 0 || src_width % kernel != 0 )
|
|
|
|
{
|
|
|
|
throw std::runtime_error( std::string( __FILE__ ) + "::" + __func__ + " source image need to have size multiplier of kernel size\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat dst_image( src_height / kernel, src_width / kernel, src_image.type() );
|
|
|
|
T* dst_image_ptr = (T*)dst_image.data;
|
|
|
|
int dst_step = dst_image.step1();
|
|
|
|
|
|
|
|
// -03 should be enough to optimize below code
|
|
|
|
for ( int row_i = 0; row_i < src_height; row_i += kernel )
|
|
|
|
{
|
|
|
|
for ( int col_i = 0; col_i < src_width; col_i += kernel )
|
|
|
|
{
|
|
|
|
dst_image_ptr[ ( row_i / kernel ) * dst_step + ( col_i / kernel ) ] = \
|
|
|
|
src_image_ptr[ row_i * src_step + col_i ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// cv::Mat internally use reference count. Will not copy by value here
|
|
|
|
return dst_image;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template< typename T >
|
|
|
|
void print_cvmat( cv::Mat image )
|
|
|
|
{
|
|
|
|
const T* img_ptr = (const T*)image.data;
|
|
|
|
int height = image.size().height;
|
|
|
|
int width = image.size().width;
|
|
|
|
int step = image.step1();
|
|
|
|
|
|
|
|
printf("print_cvmat()::Image of size height = %d, width = %d, step = %d\n", \
|
|
|
|
height, width, step );
|
|
|
|
|
|
|
|
for ( int row_i = 0; row_i < height; ++row_i )
|
|
|
|
{
|
|
|
|
int row_i_offset = row_i * step;
|
|
|
|
for ( int col_i = 0; col_i < width; ++col_i )
|
|
|
|
{
|
|
|
|
printf("%3.d ", img_ptr[ row_i_offset + col_i ]);
|
|
|
|
//printf("%3.d ", int( image.at<T>( row_i, col_i ) ) );
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Extract RGB channel seprately from bayer image
|
|
|
|
*
|
|
|
|
* @tparam T data tyoe of bayer image.
|
|
|
|
* @return vector of RGB image. OpenCV internally maintain reference count.
|
|
|
|
* Thus this step won't create deep copy overhead.
|
|
|
|
*
|
|
|
|
* @example extract_rgb_fmom_bayer<uint16_t>( bayer_img, rgb_vector_container );
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
void extract_rgb_fmom_bayer( const cv::Mat& bayer_img, \
|
|
|
|
cv::Mat& red_img, cv::Mat& green_img1, cv::Mat& green_img2, cv::Mat& blue_img )
|
|
|
|
{
|
|
|
|
const T* bayer_img_ptr = (const T*)bayer_img.data;
|
|
|
|
int bayer_width = bayer_img.size().width;
|
|
|
|
int bayer_height = bayer_img.size().height;
|
|
|
|
int bayer_step = bayer_img.step1();
|
|
|
|
|
|
|
|
if ( bayer_width % 2 != 0 || bayer_height % 2 != 0 )
|
|
|
|
{
|
|
|
|
throw std::runtime_error("Bayer image data size incorrect, must be multiplier of 2\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// RGB image is half the size of bayer image
|
|
|
|
int rgb_width = bayer_width / 2;
|
|
|
|
int rgb_height = bayer_height / 2;
|
|
|
|
red_img.create( rgb_height, rgb_width, bayer_img.type() );
|
|
|
|
green_img1.create( rgb_height, rgb_width, bayer_img.type() );
|
|
|
|
green_img2.create( rgb_height, rgb_width, bayer_img.type() );
|
|
|
|
blue_img.create( rgb_height, rgb_width, bayer_img.type() );
|
|
|
|
int rgb_step = red_img.step1();
|
|
|
|
|
|
|
|
T* r_img_ptr = (T*)red_img.data;
|
|
|
|
T* g1_img_ptr = (T*)green_img1.data;
|
|
|
|
T* g2_img_ptr = (T*)green_img2.data;
|
|
|
|
T* b_img_ptr = (T*)blue_img.data;
|
|
|
|
|
|
|
|
for ( int rgb_row_i = 0; rgb_row_i < rgb_height; rgb_row_i++ )
|
|
|
|
{
|
|
|
|
int rgb_row_i_offset = rgb_row_i * rgb_step;
|
|
|
|
|
|
|
|
// Every RGB row corresbonding to two Bayer image row
|
|
|
|
int bayer_row_i_offset1 = ( rgb_row_i * 2 + 0 ) * bayer_step; // For RG
|
|
|
|
int bayer_row_i_offset2 = ( rgb_row_i * 2 + 1 ) * bayer_step; // For GB
|
|
|
|
|
|
|
|
for ( int rgb_col_j = 0; rgb_col_j < rgb_width; rgb_col_j++ )
|
|
|
|
{
|
|
|
|
r_img_ptr[ rgb_row_i_offset + rgb_col_j ] = bayer_img_ptr[ bayer_row_i_offset1 + ( rgb_col_j * 2 + 0 ) ];
|
|
|
|
g1_img_ptr[ rgb_row_i_offset + rgb_col_j ] = bayer_img_ptr[ bayer_row_i_offset1 + ( rgb_col_j * 2 + 1 ) ];
|
|
|
|
g2_img_ptr[ rgb_row_i_offset + rgb_col_j ] = bayer_img_ptr[ bayer_row_i_offset2 + ( rgb_col_j * 2 + 0 ) ];
|
|
|
|
b_img_ptr[ rgb_row_i_offset + rgb_col_j ] = bayer_img_ptr[ bayer_row_i_offset2 + ( rgb_col_j * 2 + 1 ) ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace hdrplus
|