|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <stdexcept> // std::runtime_error
|
|
|
|
#include <opencv2/opencv.hpp> // all opencv header
|
|
|
|
// TODO: add openmp support
|
|
|
|
|
|
|
|
#if defined(__clang__)
|
|
|
|
#define LOOP_UNROLL unroll
|
|
|
|
#elif defined(__GNUC__) || defined(__GNUG__)
|
|
|
|
#define LOOP_UNROLL GCC unroll
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
#define LOOP_UNROLL unroll
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace hdrplus
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int kernel>
|
|
|
|
cv::Mat box_filter_kxk( const cv::Mat& src_image )
|
|
|
|
{
|
|
|
|
const T* src_image_ptr = (T*)src_image.data;
|
|
|
|
int src_height = src_image.size().height;
|
|
|
|
int src_width = src_image.size().width;
|
|
|
|
int src_step = src_image.step1();
|
|
|
|
|
|
|
|
if ( kernel <= 0 )
|
|
|
|
{
|
|
|
|
throw std::runtime_error(std::string( __FILE__ ) + "::" + __func__ + " box filter only support kernel size >= 1");
|
|
|
|
}
|
|
|
|
|
|
|
|
// int(src_height / kernel) = floor(src_height / kernel)
|
|
|
|
// When input size is not multiplier of kernel, take floor
|
|
|
|
cv::Mat dst_image( src_height / kernel, src_width / kernel, src_image.type() );
|
|
|
|
T* dst_image_ptr = (T*)dst_image.data;
|
|
|
|
int dst_height = dst_image.size().height;
|
|
|
|
int dst_width = dst_image.size().width;
|
|
|
|
int dst_step = dst_image.step1();
|
|
|
|
|
|
|
|
for ( int row_i = 0; row_i < dst_height; ++row_i )
|
|
|
|
{
|
|
|
|
for ( int col_i = 0; col_i < dst_width; col_i++ )
|
|
|
|
{
|
|
|
|
// Take ceiling for rounding
|
|
|
|
T box_sum = T( kernel * kernel - 1 );
|
|
|
|
//#pragma LOOP_UNROLL
|
|
|
|
for ( int kernel_row_i = 0; kernel_row_i < kernel; ++kernel_row_i )
|
|
|
|
{
|
|
|
|
//#pragma LOOP_UNROLL
|
|
|
|
for ( int kernel_col_i = 0; kernel_col_i < kernel; ++kernel_col_i )
|
|
|
|
{
|
|
|
|
box_sum += src_image_ptr[ ( row_i * kernel + kernel_row_i ) * src_step + ( col_i * kernel + kernel_col_i ) ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Average by taking ceiling
|
|
|
|
T box_avg = box_sum / T( kernel * kernel );
|
|
|
|
dst_image_ptr[ row_i * dst_step + col_i ] = box_avg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return dst_image;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int kernel>
|
|
|
|
cv::Mat downsample_nearest_neighbour( const cv::Mat& src_image )
|
|
|
|
{
|
|
|
|
const T* src_image_ptr = (T*)src_image.data;
|
|
|
|
int src_height = src_image.size().height;
|
|
|
|
int src_width = src_image.size().width;
|
|
|
|
int src_step = src_image.step1();
|
|
|
|
|
|
|
|
// int(src_height / kernel) = floor(src_height / kernel)
|
|
|
|
// When input size is not multiplier of kernel, take floor
|
|
|
|
cv::Mat dst_image = cv::Mat( src_height / kernel, src_width / kernel, src_image.type() );
|
|
|
|
T* dst_image_ptr = (T*)dst_image.data;
|
|
|
|
int dst_height = dst_image.size().height;
|
|
|
|
int dst_width = dst_image.size().width;
|
|
|
|
int dst_step = dst_image.step1();
|
|
|
|
|
|
|
|
// -03 should be enough to optimize below code
|
|
|
|
for ( int row_i = 0; row_i < dst_height; row_i++ )
|
|
|
|
{
|
|
|
|
for ( int col_i = 0; col_i < dst_width; col_i++ )
|
|
|
|
{
|
|
|
|
dst_image_ptr[ row_i * dst_step + col_i ] = \
|
|
|
|
src_image_ptr[ (row_i * kernel) * src_step + (col_i * kernel) ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return dst_image;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace hdrplus
|