@ -3,6 +3,7 @@
# include <utility>
# include <utility>
# include "hdrplus/merge.h"
# include "hdrplus/merge.h"
# include "hdrplus/burst.h"
# include "hdrplus/burst.h"
# include "hdrplus/utility.h"
namespace hdrplus
namespace hdrplus
{
{
@ -19,40 +20,17 @@ namespace hdrplus
// Get padded bayer image
// Get padded bayer image
cv : : Mat reference_image = burst_images . bayer_images_pad [ burst_images . reference_image_idx ] ;
cv : : Mat reference_image = burst_images . bayer_images_pad [ burst_images . reference_image_idx ] ;
// cv::imwrite("ref.jpg", reference_image);
cv : : imwrite ( " ref.jpg " , reference_image ) ;
// Get raw channels
// Get raw channels
std : : vector < ushort > channels [ 4 ] ;
std : : vector < cv : : Mat > channels ( 4 , cv : : Mat : : zeros ( reference_image . rows / 2 , reference_image . cols / 2 , CV_16U ) ) ;
hdrplus : : extract_rgb_fmom_bayer < uint16_t > ( reference_image , channels [ 0 ] , channels [ 1 ] , channels [ 2 ] , channels [ 3 ] ) ;
for ( int y = 0 ; y < reference_image . rows ; + + y ) {
for ( int x = 0 ; x < reference_image . cols ; + + x ) {
if ( y % 2 = = 0 ) {
if ( x % 2 = = 0 ) {
channels [ 0 ] . push_back ( reference_image . at < ushort > ( y , x ) ) ;
}
else {
channels [ 1 ] . push_back ( reference_image . at < ushort > ( y , x ) ) ;
}
}
else {
if ( x % 2 = = 0 ) {
channels [ 2 ] . push_back ( reference_image . at < ushort > ( y , x ) ) ;
}
else {
channels [ 3 ] . push_back ( reference_image . at < ushort > ( y , x ) ) ;
}
}
}
}
/////
// For each channel, perform denoising and merge
// For each channel, perform denoising and merge
for ( int i = 0 ; i < 4 ; + + i ) {
for ( int i = 0 ; i < 4 ; + + i ) {
// Get channel mat
// Get channel mat
cv : : Mat channel_i ( reference_image . rows / 2 , reference_image . cols / 2 , CV_16U , channels [ i ] . data ( ) ) ;
cv : : Mat channel_i = channels [ i ] ;
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
// Apply merging on the channel
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
@ -64,52 +42,56 @@ namespace hdrplus
//get alternate image
//get alternate image
cv : : Mat alt_image = burst_images . bayer_images_pad [ j ] ;
cv : : Mat alt_image = burst_images . bayer_images_pad [ j ] ;
std : : vector < ushort> alt_img_channel = getChannels ( alt_image ) ; //get channel array from alternate image
std : : vector < cv: : Mat > alt_channels ( 4 , cv : : Mat : : zeros ( reference_image . rows / 2 , reference_image . cols / 2 , CV_16U ) ) ;
cv: : Mat alt_channel_i ( alt_image . rows / 2 , alt_image . cols / 2 , CV_16U , alt_img_channel [ i ] . data ( ) ) ;
hdrplus: : extract_rgb_fmom_bayer < uint16_t > ( alt_image , alt_channels [ 0 ] , alt_channels [ 1 ] , alt_channels [ 2 ] , alt_channels [ 3 ] ) ;
alternate_channel_i_list . push_back ( alt_channel _i)
alternate_channel_i_list . push_back ( alt_channel s[ i ] ) ;
}
}
}
}
/////
//cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i, lambda_shot, lambda_read);
// Apply merging on the channel
cv : : Mat merged_channel = processChannel ( burst_images , alignments , channel_i , alternate_channel_i_list , lambda_shot , lambda_read ) ;
cv : : Mat merged_channel = processChannel ( burst_images , alignments , channel_i , alternate_channel_i_list , lambda_shot , lambda_read ) ;
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
// Put channel raw data back to channels
// Put channel raw data back to channels
channels[ i ] = merged_channel . reshape ( 1 , merged_channel . total ( ) ) ;
merged_channel. convertTo ( channels [ i ] , CV_16U ) ;
}
}
// Write all channels back to a bayer mat
// Write all channels back to a bayer mat
std : : vector < ushort > merged_raw ;
cv : : Mat merged ( reference_image . rows , reference_image . cols , CV_16U ) ;
int x , y ;
for ( int y = 0 ; y < reference_image . rows ; + + y ) {
for ( y = 0 ; y < reference_image . rows ; + + y ) {
for ( int x = 0 ; x < reference_image . cols ; + + x ) {
uint16_t * row = merged . ptr < uint16_t > ( y ) ;
if ( y % 2 = = 0 ) {
if ( y % 2 = = 0 ) {
if ( x % 2 = = 0 ) {
uint16_t * i0 = channels [ 0 ] . ptr < uint16_t > ( y / 2 ) ;
merged_raw . push_back ( channels [ 0 ] [ ( y / 2 ) * ( reference_image . cols / 2 ) + ( x / 2 ) ] ) ;
uint16_t * i1 = channels [ 1 ] . ptr < uint16_t > ( y / 2 ) ;
}
else {
for ( x = 0 ; x < reference_image . cols ; ) {
merged_raw . push_back ( channels [ 1 ] [ ( y / 2 ) * ( reference_image . cols / 2 ) + ( x / 2 ) ] ) ;
//R
}
row [ x ] = i0 [ x / 2 ] ;
x + + ;
//G1
row [ x ] = i1 [ x / 2 ] ;
x + + ;
}
}
else {
}
if ( x % 2 = = 0 ) {
else {
merged_raw . push_back ( channels [ 2 ] [ ( y / 2 ) * ( reference_image . cols / 2 ) + ( x / 2 ) ] ) ;
uint16_t * i2 = channels [ 2 ] . ptr < uint16_t > ( y / 2 ) ;
}
uint16_t * i3 = channels [ 3 ] . ptr < uint16_t > ( y / 2 ) ;
else {
merged_raw . push_back ( channels [ 3 ] [ ( y / 2 ) * ( reference_image . cols / 2 ) + ( x / 2 ) ] ) ;
for ( x = 0 ; x < reference_image . cols ; ) {
}
//G2
row [ x ] = i2 [ x / 2 ] ;
x + + ;
//B
row [ x ] = i3 [ x / 2 ] ;
x + + ;
}
}
}
}
}
}
// Create merged mat
cv : : Mat merged ( reference_image . rows , reference_image . cols , CV_16U , merged_raw . data ( ) ) ;
// cv::imwrite("merged.jpg", merged);
// Remove padding
// Remove padding
std : : vector < int > padding = burst_images . padding_info_bayer ;
std : : vector < int > padding = burst_images . padding_info_bayer ;
cv : : Range horizontal = cv : : Range ( padding [ 2 ] , reference_image . cols - padding [ 3 ] ) ;
cv : : Range horizontal = cv : : Range ( padding [ 2 ] , reference_image . cols - padding [ 3 ] ) ;
@ -203,14 +185,14 @@ namespace hdrplus
}
}
// TODO: 4.2 Temporal Denoising
// TODO: 4.2 Temporal Denoising
std : : vector < cv : : Mat > temporal_denoised_tiles = temporal_denoise ( reference_tiles , reference_tiles_DFT , noise_varaince )
//std::vector<cv::Mat> temporal_denoised_tiles = temporal_denoise(reference_tiles, reference_tiles_DFT, noise_varaince)
// TODO: 4.3 Spatial Denoising
// TODO: 4.3 Spatial Denoising
////adding after here
////adding after here
std : : vector < cv : : Mat > spatial_denoised_tiles = spatial_denoise ( reference_tiles , reference_tiles_DFT , noise_varaince )
//std::vector<cv::Mat> spatial_denoised_tiles = spatial_denoise( reference_tiles, reference_tiles_DFT, noise_varaince)
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
//reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
//reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
////
////
@ -225,10 +207,6 @@ namespace hdrplus
}
}
reference_tiles = denoised_tiles ;
reference_tiles = denoised_tiles ;
// 4.4 Cosine Window Merging
// 4.4 Cosine Window Merging
// Process tiles through 2D cosine window
// Process tiles through 2D cosine window
std : : vector < cv : : Mat > windowed_tiles ;
std : : vector < cv : : Mat > windowed_tiles ;
@ -239,137 +217,105 @@ namespace hdrplus
// Merge tiles
// Merge tiles
return mergeTiles ( windowed_tiles , channel_image . rows , channel_image . cols ) ;
return mergeTiles ( windowed_tiles , channel_image . rows , channel_image . cols ) ;
}
}
//Helper function to get the channels from the input image
std : : vector < ushort > getChannels ( cv : : Mat input_image ) {
std : : vector < ushort > channels [ 4 ] ;
for ( int y = 0 ; y < input_image . rows ; + + y ) {
for ( int x = 0 ; x < input_image . cols ; + + x ) {
if ( y % 2 = = 0 ) {
if ( x % 2 = = 0 ) {
channels [ 0 ] . push_back ( input_image . at < ushort > ( y , x ) ) ;
}
else {
channels [ 1 ] . push_back ( input_image . at < ushort > ( y , x ) ) ;
}
}
else {
if ( x % 2 = = 0 ) {
channels [ 2 ] . push_back ( input_image . at < ushort > ( y , x ) ) ;
}
else {
channels [ 3 ] . push_back ( input_image . at < ushort > ( y , x ) ) ;
}
}
}
}
return channels ;
}
// std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
// //goal: temporially denoise using the weiner filter
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
// //input:
// //1. array of 2D dft tiles of the reference image
// //2. array of 2D dft tiles ocf the aligned alternate image
std : : vector < cv : : Mat > temporal_denoise ( std : : vector < cv : : Mat > reference_tiles , std : : vector < cv : : Mat > reference_tiles_DFT , std : : vector < float > noise_varaince ) {
// //3. estimated noise varaince
//goal: temporially denoise using the weiner filter
// //4. temporal factor
//input:
// //return: merged image patches dft
//1. array of 2D dft tiles of the reference image
//2. array of 2D dft tiles ocf the aligned alternate image
//3. estimated noise varaince
//4. temporal factor
//return: merged image patches dft
//tile_size = TILE_SIZE;
// //tile_size = TILE_SIZE;
double temporal_factor = 8.0 //8 by default
// double temporal_factor = 8.0 //8 by default
double temporal_noise_scaling = ( pow ( TILE_SIZE , 2 ) * ( 1.0 / 16 * 2 ) ) * temporal_factor ;
// double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
//start calculating the merged image tiles fft
// //start calculating the merged image tiles fft
//get the tiles of the alternate image as a list
// //get the tiles of the alternate image as a list
std : : vector < std : : vector < cv : : Mat > > alternate_channel_i_tile_list ; //list of alt channel tiles
// std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
std : : vector < std : : vector < cv : : Mat > > alternate_tiles_DFT_list ; //list of alt channel tiles
// std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
for ( auto alt_img_channel : alternate_channel_i_list ) {
// for (auto alt_img_channel : alternate_channel_i_list) {
std : : vector < ushort > alt_img_channel_tile = getReferenceTiles ( alt_img_channel ) ; //get tiles from alt image
// std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
alternate_channel_i_tile_list . push_back ( alt_img_channel_tile )
// alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
std : : vector < cv : : Mat > alternate_tiles_DFT_list ;
// std::vector<cv::Mat> alternate_tiles_DFT_list;
for ( auto alt_tile : alt_img_channel_tile ) {
// for (auto alt_tile : alt_img_channel_tile) {
cv : : Mat alt_tile_DFT ;
// cv::Mat alt_tile_DFT;
alt_tile . convertTo ( alt_tile_DFT , CV_32F ) ;
// alt_tile.convertTo(alt_tile_DFT, CV_32F);
cv : : dft ( alt_tile_DFT , alt_tile_DFT , cv : : DFT_SCALE | cv : : DFT_COMPLEX_OUTPUT ) ;
// cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
alternate_tiles_DFT_list . push_back ( alt_tile_DFT ) ;
// alternate_tiles_DFT_list.push_back(alt_tile_DFT);
}
// }
alternate_tiles_DFT_list . push_back ( alternate_tiles_DFT ) ;
// alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
}
// }
//get the dft of the alternate image
// //get the dft of the alternate image
//std::vector<cv::Mat> alternate_tiles_DFT;
// //std::vector<cv::Mat> alternate_tiles_DFT;
//std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
// //std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
//find reference_tiles_DFT - alternate_tiles_DFT_list
// //find reference_tiles_DFT - alternate_tiles_DFT_list
std : : vector < std : : vector < cv : : Mat > > tile_difference_list ; //list of tile differences
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
for ( auto individual_alternate_tile_DFT : alternate_tiles_DFT_list ) {
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
std : : vector < cv : : Mat > single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT ;
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
tile_difference_list . push_back ( single_tile_difference ) ;
// tile_difference_list.push_back(single_tile_difference);
}
// }
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// // std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
std : : vector < cv : : Mat > tile_sq_asolute_diff = tile_differences ; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
//get the real and imaginary components
// //get the real and imaginary components
/*
// /*
std : : vector < std : : vector < cv : : Mat > > absolute_difference_list ;
// std::vector<std::vector<cv::Mat>> absolute_difference_list;
for ( auto individual_difference : tile_difference_list ) {
// for (auto individual_difference : tile_difference_list) {
for ( int i = 0 ; i < individual_difference . rows ; i + + ) {
// for (int i =0; i < individual_difference.rows; i++ ) {
std : : complex < double > * row_ptr = tile_sq_asolute_diff . ptr < std : : complex < double > > ( i ) ;
// std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
for ( int j = 0 ; j < individual_difference . cols * individual_difference . channels ( ) ; j + + ) {
// for (int j = 0; j< individual_difference.cols*individual_difference.channels(); j++) {
row_ptr = math . pow ( individual_difference . at < std : : complex < double > > ( i , j ) . real ( ) , 2 ) + math . pow ( individual_difference . at < std : : complex < double > > ( i , j ) . imag ( ) , 2 ) ; //.real and .imag
// row_ptr = math.pow(individual_difference.at<std::complex<double>>(i,j).real(),2)+math.pow(individual_difference.at<std::complex<double>>(i,j).imag(),2); //.real and .imag
}
// }
}
// }
//std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
absolute_difference_list . push_back ( single_tile_difference ) ;
// absolute_difference_list.push_back(single_tile_difference);
}
// }
*/
// */
//find the squared absolute difference across all the tiles
// //find the squared absolute difference across all the tiles
std : : vector < cv : : Mat > A = tile_sq_asolute_diff / ( tile_sq_asolute_diff + noise_variance )
// std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
std : : vector < cv : : Mat > merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences ;
// std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
return merged_image_tiles_fft
// return merged_image_tiles_fft
}
// }
std : : vector < cv : : Mat > spatial_denoise ( std : : vector < cv : : Mat > reference_tiles , std : : vector < cv : : Mat > reference_tiles_DFT , std : : vector < float > noise_varaince ) {
// std::vector<cv::Mat> spatial_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
double spatial_factor = 1 ; //to be added
// double spatial_factor = 1; //to be added
double spatial_noise_scaling = ( pow ( TILE_SIZE , 2 ) * ( 1.0 / 16 * 2 ) ) * spatial_factor ;
// double spatial_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*spatial_factor;
//calculate the spatial denoising
// //calculate the spatial denoising
spatial_tile_dist = reference_tiles . real * * 2 + reference_tiles . imag * * 2 ;
// spatial_tile_dist = reference_tiles.real**2 + reference_tiles.imag**2;
std : : vector < cv : : Mat > WienerCoeff = denoised_tiles * spatial_noise_scaling * noise_variance ;
// std::vector<cv::Mat> WienerCoeff = denoised_tiles*spatial_noise_scaling*noise_variance;
merged_channel_tiles_spatial = reference_tiles * spatial_tile_dist / ( spatial_tile_dist + WienerCoeff )
// merged_channel_tiles_spatial = reference_tiles*spatial_tile_dist/(spatial_tile_dist+WienerCoeff)
}
// }
std : : pair < double , double > merge : : getNoiseParams ( int ISO , \
std : : pair < double , double > merge : : getNoiseParams ( int ISO , \