Temporal denoising finalized & tested; finishing bug

main
Haohua-Lyu 3 years ago
parent 71e5f22972
commit 2d8c4efbb0

@ -6,6 +6,8 @@
#include "hdrplus/burst.h"
#define TILE_SIZE 16
#define TEMPORAL_FACTOR 75
#define SPATIAL_FACTOR 0.1
namespace hdrplus
{
@ -173,7 +175,7 @@ class merge
float lambda_read);
//temporal denoise
std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> tiles, std::vector<cv::Mat> alt_imgs, std::vector<float> noise_variance, float temporal_factor);
std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> tiles, std::vector<std::vector<cv::Mat>> alt_tiles, std::vector<float> noise_variance, float temporal_factor);
std::vector<cv::Mat> spatial_denoise(std::vector<cv::Mat> tiles, int num_alts, std::vector<float> noise_variance, float spatial_factor);

@ -31,7 +31,7 @@ namespace hdrplus
for (int i = 0; i < 4; ++i) {
// Get channel mat
cv::Mat channel_i = channels[i];
cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
@ -52,7 +52,7 @@ namespace hdrplus
// Apply merging on the channel
cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i, alternate_channel_i_list, lambda_shot, lambda_read);
cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
// Put channel raw data back to channels
merged_channel.convertTo(processed_channels[i], CV_16U);
@ -186,19 +186,40 @@ namespace hdrplus
reference_tiles_DFT.push_back(ref_tile_DFT);
}
// TODO: 4.2 Temporal Denoising
//std::vector<cv::Mat> temporal_denoised_tiles = temporal_denoise(reference_tiles, reference_tiles_DFT, noise_varaince)
// Acquire alternate tiles and apply FFT on them as well
std::vector<std::vector<cv::Mat>> alt_tiles_list(reference_tiles.size());
int num_tiles_row = alternate_channel_i_list[0].rows / offset - 1;
int num_tiles_col = alternate_channel_i_list[0].cols / offset - 1;
for (int y = 0; y < num_tiles_row; ++y) {
for (int x = 0; x < num_tiles_col; ++x) {
std::vector<cv::Mat> alt_tiles;
// Get reference tile location
int top_left_y = y * offset;
int top_left_x = x * offset;
for (int i = 0; i < alternate_channel_i_list.size(); ++i) {
// Get alignment displacement
int displacement_y, displacement_x;
std::tie(displacement_y, displacement_x) = alignments[i + 1][y][x];
// Get tile
cv::Mat alt_tile = alternate_channel_i_list[i](cv::Rect(top_left_x + displacement_x, top_left_y + displacement_y, TILE_SIZE, TILE_SIZE));
// Apply FFT
cv::Mat alt_tile_DFT;
alt_tile.convertTo(alt_tile_DFT, CV_32F);
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
alt_tiles.push_back(alt_tile_DFT);
}
alt_tiles_list[y * num_tiles_col + x] = alt_tiles;
}
}
// TODO: 4.3 Spatial Denoising
// 4.2 Temporal Denoising
reference_tiles_DFT = temporal_denoise(reference_tiles_DFT, alt_tiles_list, noise_variance, TEMPORAL_FACTOR);
////adding after here
// 4.3 Spatial Denoising
reference_tiles_DFT = spatial_denoise(reference_tiles_DFT, alternate_channel_i_list.size(), noise_variance, SPATIAL_FACTOR);
//now reference tiles are temporally and spatially denoised
std::vector<cv::Mat> spatial_denoised_tiles = spatial_denoise(reference_tiles_DFT, alternate_channel_i_list.size(), noise_variance, 0.1);
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
// reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
////
reference_tiles_DFT = spatial_denoised_tiles;
// Apply IFFT on reference tiles (frequency to spatial)
std::vector<cv::Mat> denoised_tiles;
for (auto dft_tile : reference_tiles_DFT) {
@ -220,137 +241,56 @@ namespace hdrplus
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
}
std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> tiles, std::vector<cv::Mat> alt_imgs, std::vector<float> noise_variance, float temporal_factor) {
//goal: temporially denoise using the weiner filter
//input:
//1. array of 2D dft tiles of the reference image
//2. array of 2D dft tiles ocf the aligned alternate image
//3. estimated noise varaince
//4. temporal factor
//return: merged image patches dft
//tile_size = TILE_SIZE;
//start calculating the merged image tiles fft
//get the tiles of the alternate image as a list
std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
for (auto alt_img_channel : alternate_channel_i_list) {
std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
std::vector<cv::Mat> alternate_tiles_DFT;
for (auto alt_tile : alt_img_channel_tile) {
cv::Mat alt_tile_DFT;
alt_tile.convertTo(alt_tile_DFT, CV_32F);
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
alternate_tiles_DFT.push_back(alt_tile_DFT);
}
alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
}
//get the dft of the alternate image
//std::vector<cv::Mat> alternate_tiles_DFT;
//std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
std::vector<cv::Mat> merge::temporal_denoise(std::vector<cv::Mat> tiles, std::vector<std::vector<cv::Mat>> alt_tiles, std::vector<float> noise_variance, float temporal_factor) {
// goal: temporially denoise using the weiner filter
// input:
// 1. array of 2D dft tiles of the reference image
// 2. array of 2D dft tiles of the aligned alternate image
// 3. estimated noise variance
// 4. temporal factor
// return: merged image patches dft
//find reference_tiles_DFT - alternate_tiles_DFT_list
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
// tile_difference_list.push_back(single_tile_difference);
// }
// //find the squared absolute difference across all the tiles
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// std::vector<cv::Mat> copy_diff = tile_differences.clone(); //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
//get the real and imaginary components (real**2 + imag**2)
// std::vector<cv::Mat> absolute_distance_list;
// for (auto individual_difference : tile_difference_list) {
// cv::Mat copy_diff = individual_difference.clone();
// for (int i = 0 ; i < individual_difference.rows; i++ ) {
// //std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
// for (int j = 0; j < individual_difference.cols*individual_difference.channels(); j++) {
// std::complex<double> single_complex_num = individual_difference.at<std::complex<double>>(i,j);
// copy_diff.at<std::complex<double>>(i,j) = math.pow(single_complex_num.real(),2)+math.pow(single_complex_num.imag(),2); //.real and .imag
// }
// }
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
// absolute_distance_list.push_back(copy_diff);
// }
//get shrinkage operator
//std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
//std::vector<cv::Mat> A;
//get tile_sq_asolute_diff+noise_variance
// std::vector<cv::Mat> A_denominator;
// for (int i = 0; i < absolute_distance_list.size();i++){
// cv::Mat noise_var_mat( noise_variance[i],absolute_distance_list[i].rows,absolute_distance_list[i].cols,CV_16U);
// cv::Mat single_denominator = absolute_distance_list[i] + noise_var_mat;
// A_denominator.push_back(single_denominator);
// }
// for (auto individual_distance : absolute_distance_list) {
// cv::Mat single_A =
// }
//std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
//calculate noise scaling
double temporal_factor = 8.0 //8 by default
double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
//loop across tiles
// Calculate absolute difference
// calculate noise scaling
double temporal_noise_scaling = ((2.0 / 16)) * TEMPORAL_FACTOR;
// loop across tiles
std::vector<cv::Mat> denoised;
for (int i = 0; i < tiles.size(); ++i) {
// sum of pairwise denoising
cv::Mat tile_sum = cv::Mat::zeros(TILE_SIZE, TILE_SIZE, CV_32FC2);
double coeff = temporal_noise_scaling * noise_variance[i];
// Ref tile
cv::Mat tile = tiles[i];
//float coeff = noise_variance[i] / num_alts * spatial_noise_scaling;
// Alt tiles
std::vector<cv::Mat> alt_tiles_i = alt_tiles[i];
for (int j = 0; j < alt_tiles_i.size(); ++j) {
// Alt tile
cv::Mat alt_tile = alt_tiles_i[j];
// Tile difference
cv::Mat diff = tile - alt_tile;
// Calculate absolute difference
cv::Mat complexMats[2];
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv::split(diff, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
//find shrinkage operator A
//create a mat of only the noise variance
cv::Mat noise_var_mat(noise_variance[i]*temporal_noise_scaling,absolute_diff.rows,absolute_diff.cols,CV_16U);
cv::Mat A_denom = absolute_diff+noise_var_mat;
cv::Mat A = cv::divide(absolute_diff,A_denom);
//update reference DFT
reference_tiles_DFT += alternate_tiles_DFT_list + cv::mul(A,absolute_diff);
// find shrinkage operator A
cv::Mat shrinkage;
cv::divide(absolute_diff, absolute_diff + coeff, shrinkage);
cv::merge(std::vector<cv::Mat>{shrinkage, shrinkage}, shrinkage);
// Interpolation
tile_sum += alt_tile + diff.mul(shrinkage);
}
// Average by num of frames
cv::divide(tile_sum, alt_tiles_i.size() + 1, tile_sum);
denoised.push_back(tile_sum);
}
//get average
reference_tiles_DFT = cv::divide(reference_tiles_DFT,tiles.size())
return reference_tiles_DFT
return denoised;
}
std::vector<cv::Mat> merge::spatial_denoise(std::vector<cv::Mat> tiles, int num_alts, std::vector<float> noise_variance, float spatial_factor) {

Loading…
Cancel
Save