Merge branch 'dev_opt_align' into main

main
Xiao Song 3 years ago
commit 3b635aadbf

@ -6,8 +6,8 @@ project(hdrplus)
# set c++ standard
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3 -Wall")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O3 -Wall")
# make sure we use Release and warn otherwise
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -37,6 +37,9 @@ message(STATUS "Found LIBRAW_LIBRARY to be ${LIBRAW_LIBRARY}" )
find_package(exiv2 REQUIRED CONFIG NAMES exiv2)
message(STATUS "Found Exiv2 and linked")
# OpenMP
find_package(OpenMP REQUIRED)
# library
include_directories( include )
@ -60,7 +63,8 @@ add_library(${PROJECT_NAME} SHARED ${src_files} )
target_link_libraries(${PROJECT_NAME} PUBLIC
${OpenCV_LIBS}
${LIBRAW_LIBRARY}
exiv2lib )
exiv2lib
OpenMP::OpenMP_CXX )
# example
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/bin )

@ -17,6 +17,7 @@
step 3:
```shell
cd LibRaw-X.YY
autoreconf -f -i
./configure # with optional args
make
```

@ -3,21 +3,33 @@
#include <string>
#include <stdexcept> // std::runtime_error
#include <opencv2/opencv.hpp> // all opencv header
// TODO: add openmp support
#if defined(__clang__)
#define LOOP_UNROLL unroll
#elif defined(__GNUC__) || defined(__GNUG__)
#define LOOP_UNROLL GCC unroll
#elif defined(_MSC_VER)
#define LOOP_UNROLL unroll
#include <omp.h>
// https://stackoverflow.com/questions/63404539/portable-loop-unrolling-with-template-parameter-in-c-with-gcc-icc
/// Helper macros for stringification
#define TO_STRING_HELPER(X) #X
#define TO_STRING(X) TO_STRING_HELPER(X)
// Define loop unrolling depending on the compiler
#if defined(__ICC) || defined(__ICL)
#define UNROLL_LOOP(n) _Pragma(TO_STRING(unroll (n)))
#elif defined(__clang__)
#define UNROLL_LOOP(n) _Pragma(TO_STRING(unroll (n)))
#elif defined(__GNUC__) && !defined(__clang__)
#define UNROLL_LOOP(n) _Pragma(TO_STRING(GCC unroll (16)))
#elif defined(_MSC_BUILD)
#pragma message ("Microsoft Visual C++ (MSVC) detected: Loop unrolling not supported!")
#define UNROLL_LOOP(n)
#else
#warning "Unknown compiler: Loop unrolling not supported!"
#define UNROLL_LOOP(n)
#endif
namespace hdrplus
{
template <typename T, int kernel>
cv::Mat box_filter_kxk( const cv::Mat& src_image )
{
@ -45,10 +57,11 @@ cv::Mat box_filter_kxk( const cv::Mat& src_image )
{
// Take ceiling for rounding
T box_sum = T( 0 );
//#pragma LOOP_UNROLL
UNROLL_LOOP( kernel )
for ( int kernel_row_i = 0; kernel_row_i < kernel; ++kernel_row_i )
{
//#pragma LOOP_UNROLL
UNROLL_LOOP( kernel )
for ( int kernel_col_i = 0; kernel_col_i < kernel; ++kernel_col_i )
{
box_sum += src_image_ptr[ ( row_i * kernel + kernel_row_i ) * src_step + ( col_i * kernel + kernel_col_i ) ];
@ -84,6 +97,7 @@ cv::Mat downsample_nearest_neighbour( const cv::Mat& src_image )
// -03 should be enough to optimize below code
for ( int row_i = 0; row_i < dst_height; row_i++ )
{
UNROLL_LOOP( 32 )
for ( int col_i = 0; col_i < dst_width; col_i++ )
{
dst_image_ptr[ row_i * dst_step + col_i ] = \
@ -126,10 +140,10 @@ void print_cvmat( cv::Mat image )
* @return vector of RGB image. OpenCV internally maintain reference count.
* Thus this step won't create deep copy overhead.
*
* @example extract_rgb_fmom_bayer<uint16_t>( bayer_img, rgb_vector_container );
* @example extract_rgb_from_bayer<uint16_t>( bayer_img, rgb_vector_container );
*/
template <typename T>
void extract_rgb_fmom_bayer( const cv::Mat& bayer_img, \
void extract_rgb_from_bayer( const cv::Mat& bayer_img, \
cv::Mat& img_ch1, cv::Mat& img_ch2, cv::Mat& img_ch3, cv::Mat& img_ch4 )
{
const T* bayer_img_ptr = (const T*)bayer_img.data;
@ -156,6 +170,7 @@ void extract_rgb_fmom_bayer( const cv::Mat& bayer_img, \
T* img_ch3_ptr = (T*)img_ch3.data;
T* img_ch4_ptr = (T*)img_ch4.data;
#pragma omp parallel for
for ( int rgb_row_i = 0; rgb_row_i < rgb_height; rgb_row_i++ )
{
int rgb_row_i_offset = rgb_row_i * rgb_step;
@ -184,8 +199,6 @@ template <typename T>
void print_tile( const cv::Mat& img, int tile_size, int start_idx_row, int start_idx_col )
{
const T* img_ptr = (T*)img.data;
int src_height = img.size().height;
int src_width = img.size().width;
int src_step = img.step1();
for ( int row = start_idx_row; row < tile_size + start_idx_row; ++row )

@ -5,6 +5,7 @@
#include <utility> // std::make_pair
#include <stdexcept> // std::runtime_error
#include <opencv2/opencv.hpp> // all opencv header
#include <omp.h>
#include "hdrplus/align.h"
#include "hdrplus/burst.h"
#include "hdrplus/utility.h"
@ -30,7 +31,7 @@ static void build_per_grayimg_pyramid( \
images_pyramid.resize( inv_scale_factors.size() );
for ( int i = 0; i < inv_scale_factors.size(); ++i )
for ( size_t i = 0; i < inv_scale_factors.size(); ++i )
{
cv::Mat blur_image;
cv::Mat downsample_image;
@ -43,7 +44,6 @@ static void build_per_grayimg_pyramid( \
downsample_image = src_image;
break;
case 2:
//printf("downsample with gaussian sigma %.2f", inv_scale_factors[ i ] * 0.5 );
// // Gaussian blur
cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
@ -56,9 +56,10 @@ static void build_per_grayimg_pyramid( \
break;
case 4:
printf("downsample with gaussian sigma %.2f", inv_scale_factors[ i ] * 0.5 );
cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
downsample_image = downsample_nearest_neighbour<uint16_t, 4>( blur_image );
//downsample_image = downsample_nearest_neighbour<uint16_t, 4>( images_pyramid.at( i-1 ) );
images_pyramid.at( i ) = downsample_image.clone();
break;
@ -81,7 +82,7 @@ static void build_upsampled_prev_aligement( \
constexpr int repeat_factor = pyramid_scale_factor_prev_curr / tilesize_scale_factor_prev_curr;
// printf("build_upsampled_prev_aligement with scale factor %d, repeat factor %d, tile size factor %d\n", \
pyramid_scale_factor_prev_curr, repeat_factor, tilesize_scale_factor_prev_curr );
// pyramid_scale_factor_prev_curr, repeat_factor, tilesize_scale_factor_prev_curr );
int dst_height = src_height * repeat_factor;
int dst_width = src_width * repeat_factor;
@ -97,6 +98,7 @@ static void build_upsampled_prev_aligement( \
dst_alignment.resize( num_tiles_h, std::vector<std::pair<int, int>>( num_tiles_w, std::pair<int, int>(0, 0) ) );
// Upsample alignment
#pragma omp parallel for collapse(2)
for ( int row_i = 0; row_i < src_height; row_i++ )
{
for ( int col_i = 0; col_i < src_width; col_i++ )
@ -107,11 +109,15 @@ static void build_upsampled_prev_aligement( \
align_i.second *= pyramid_scale_factor_prev_curr;
// repeat
UNROLL_LOOP( repeat_factor )
for ( int repeat_row_i = 0; repeat_row_i < repeat_factor; ++repeat_row_i )
{
int repeat_row_i_offset = row_i * repeat_factor + repeat_row_i;
UNROLL_LOOP( repeat_factor )
for ( int repeat_col_i = 0; repeat_col_i < repeat_factor; ++repeat_col_i )
{
dst_alignment[ row_i * repeat_factor + repeat_row_i ][ col_i * repeat_factor + repeat_col_i ] = align_i;
int repeat_col_i_offset = col_i * repeat_factor + repeat_col_i;
dst_alignment[ repeat_row_i_offset ][ repeat_col_i_offset ] = align_i;
}
}
}
@ -142,12 +148,14 @@ static unsigned long long l1_distance( const cv::Mat& img1, const cv::Mat& img2,
// Range check for safety
if ( img1_tile_row_start_idx < 0 || img1_tile_row_start_idx > img1_height - tile_size )
{
throw std::runtime_error("l1 distance img1_tile_row_start_idx out of valid range\n");
throw std::runtime_error("l1 distance img1_tile_row_start_idx" + std::to_string( img1_tile_row_start_idx ) + \
" out of valid range (0, " + std::to_string( img1_height - tile_size ) + ")\n" );
}
if ( img1_tile_col_start_idx < 0 || img1_tile_col_start_idx > img1_width - tile_size )
{
throw std::runtime_error("l1 distance img1_tile_col_start_idx out of valid range\n");
throw std::runtime_error("l1 distance img1_tile_col_start_idx" + std::to_string( img1_tile_col_start_idx ) + \
" out of valid range (0, " + std::to_string( img1_width - tile_size ) + ")\n" );
}
if ( img2_tile_row_start_idx < 0 || img2_tile_row_start_idx > img2_height - tile_size )
@ -161,12 +169,14 @@ static unsigned long long l1_distance( const cv::Mat& img1, const cv::Mat& img2,
}
return_type sum(0);
// TODO: add pragma unroll here
UNROLL_LOOP( tile_size )
for ( int row_i = 0; row_i < tile_size; ++row_i )
{
const data_type* img1_ptr_row_i = img1_ptr + (img1_tile_row_start_idx + row_i) * img1_step + img1_tile_col_start_idx;
const data_type* img2_ptr_row_i = img2_ptr + (img2_tile_row_start_idx + row_i) * img2_step + img2_tile_col_start_idx;
UNROLL_LOOP( tile_size )
for ( int col_i = 0; col_i < tile_size; ++col_i )
{
data_type l1 = CUSTOME_ABS( img1_ptr_row_i[ col_i ] - img2_ptr_row_i[ col_i ] );
@ -202,22 +212,24 @@ static return_type l2_distance( const cv::Mat& img1, const cv::Mat& img2, \
// Range check for safety
if ( img1_tile_row_start_idx < 0 || img1_tile_row_start_idx > img1_height - tile_size )
{
throw std::runtime_error("l1 distance img1_tile_row_start_idx out of valid range\n");
throw std::runtime_error("l2 distance img1_tile_row_start_idx" + std::to_string( img1_tile_row_start_idx ) + \
" out of valid range (0, " + std::to_string( img1_height - tile_size ) + ")\n" );
}
if ( img1_tile_col_start_idx < 0 || img1_tile_col_start_idx > img1_width - tile_size )
{
throw std::runtime_error("l1 distance img1_tile_col_start_idx out of valid range\n");
throw std::runtime_error("l2 distance img1_tile_col_start_idx" + std::to_string( img1_tile_col_start_idx ) + \
" out of valid range (0, " + std::to_string( img1_width - tile_size ) + ")\n" );
}
if ( img2_tile_row_start_idx < 0 || img2_tile_row_start_idx > img2_height - tile_size )
{
throw std::runtime_error("l1 distance img2_tile_row_start_idx out of valid range\n");
throw std::runtime_error("l2 distance img2_tile_row_start_idx out of valid range\n");
}
if ( img2_tile_col_start_idx < 0 || img2_tile_col_start_idx > img2_width - tile_size )
{
throw std::runtime_error("l1 distance img2_tile_col_start_idx out of valid range\n");
throw std::runtime_error("l2 distance img2_tile_col_start_idx out of valid range\n");
}
// printf("Search two tile with ref : \n");
@ -226,12 +238,14 @@ static return_type l2_distance( const cv::Mat& img1, const cv::Mat& img2, \
// print_tile<data_type>( img2, tile_size, img2_tile_row_start_idx, img2_tile_col_start_idx );
return_type sum(0);
// TODO: add pragma unroll here
UNROLL_LOOP( tile_size )
for ( int row_i = 0; row_i < tile_size; ++row_i )
{
const data_type* img1_ptr_row_i = img1_ptr + (img1_tile_row_start_idx + row_i) * img1_step + img1_tile_col_start_idx;
const data_type* img2_ptr_row_i = img2_ptr + (img2_tile_row_start_idx + row_i) * img2_step + img2_tile_col_start_idx;
UNROLL_LOOP( tile_size )
for ( int col_i = 0; col_i < tile_size; ++col_i )
{
data_type l1 = CUSTOME_ABS( img1_ptr_row_i[ col_i ] - img2_ptr_row_i[ col_i ] );
@ -245,6 +259,47 @@ static return_type l2_distance( const cv::Mat& img1, const cv::Mat& img2, \
}
template<typename T, int tile_size>
static cv::Mat extract_img_tile( const cv::Mat& img, int img_tile_row_start_idx, int img_tile_col_start_idx )
{
const T* img_ptr = (const T*)img.data;
int img_width = img.size().width;
int img_height = img.size().height;
int img_step = img.step1();
if ( img_tile_row_start_idx < 0 || img_tile_row_start_idx > img_height - tile_size )
{
throw std::runtime_error("extract_img_tile img_tile_row_start_idx " + std::to_string( img_tile_row_start_idx ) + \
" out of valid range (0, " + std::to_string( img_height - tile_size ) + ")\n" );
}
if ( img_tile_col_start_idx < 0 || img_tile_col_start_idx > img_width - tile_size )
{
throw std::runtime_error("extract_img_tile img_tile_col_start_idx " + std::to_string( img_tile_col_start_idx ) + \
" out of valid range (0, " + std::to_string( img_width - tile_size ) + ")\n" );
}
cv::Mat img_tile( tile_size, tile_size, img.type() );
T* img_tile_ptr = (T*)img_tile.data;
int img_tile_step = img_tile.step1();
UNROLL_LOOP( tile_size )
for ( int row_i = 0; row_i < tile_size; ++row_i )
{
const T* img_ptr_row_i = img_ptr + img_step * ( img_tile_row_start_idx + row_i );
T* img_tile_ptr_row_i = img_tile_ptr + img_tile_step * row_i;
UNROLL_LOOP( tile_size )
for ( int col_i = 0; col_i < tile_size; ++col_i )
{
img_tile_ptr_row_i[ col_i ] = img_ptr_row_i[ img_tile_col_start_idx + col_i ];
}
}
return img_tile;
}
void align_image_level( \
const cv::Mat& ref_img, \
const cv::Mat& alt_img, \
@ -316,6 +371,42 @@ void align_image_level( \
}
}
// Function to extract reference image tile for memory cache
cv::Mat (*extract_ref_img_tile)(const cv::Mat&, int, int) = nullptr;
if ( curr_tile_size == 8 )
{
extract_ref_img_tile = &extract_img_tile<uint16_t, 8>;
}
else if ( curr_tile_size == 16 )
{
extract_ref_img_tile = &extract_img_tile<uint16_t, 16>;
}
// Function to extract search image tile for memory cache
cv::Mat (*extract_alt_img_search)(const cv::Mat&, int, int) = nullptr;
if ( curr_tile_size == 8 )
{
if ( search_radiou == 1 )
{
extract_alt_img_search = &extract_img_tile<uint16_t, 8+1*2>;
}
else if ( search_radiou == 4 )
{
extract_alt_img_search = &extract_img_tile<uint16_t, 8+4*2>;
}
}
else if ( curr_tile_size == 16 )
{
if ( search_radiou == 1 )
{
extract_alt_img_search = &extract_img_tile<uint16_t, 16+1*2>;
}
else if ( search_radiou == 4 )
{
extract_alt_img_search = &extract_img_tile<uint16_t, 16+4*2>;
}
}
int num_tiles_h = ref_img.size().height / (curr_tile_size / 2) - 1;
int num_tiles_w = ref_img.size().width / (curr_tile_size / 2 ) - 1;
@ -372,15 +463,16 @@ void align_image_level( \
// printf("Alter image pad h=%d, w=%d: \n", alt_img_pad.size().height, alt_img_pad.size().width );
// print_img<uint16_t>( alt_img_pad );
//printf("!! enlarged tile size %d\n", curr_tile_size + 2 * search_radiou );
// printf("!! enlarged tile size %d\n", curr_tile_size + 2 * search_radiou );
int alt_tile_row_idx_max = alt_img_pad.size().height - ( curr_tile_size + 2 * search_radiou );
int alt_tile_col_idx_max = alt_img_pad.size().width - ( curr_tile_size + 2 * search_radiou );
// TODO delete below distance vector, this is for debug only
// Dlete below distance vector, this is for debug only
std::vector<std::vector<uint16_t>> distances( num_tiles_h, std::vector<uint16_t>( num_tiles_w, 0 ));
/* Iterate through all reference tile & compute distance */
#pragma omp parallel for collapse(2)
for ( int ref_tile_row_i = 0; ref_tile_row_i < num_tiles_h; ref_tile_row_i++ )
{
for ( int ref_tile_col_i = 0; ref_tile_col_i < num_tiles_w; ref_tile_col_i++ )
@ -389,8 +481,8 @@ void align_image_level( \
int ref_tile_row_start_idx_i = ref_tile_row_i * curr_tile_size / 2;
int ref_tile_col_start_idx_i = ref_tile_col_i * curr_tile_size / 2;
//printf("\nRef img tile [%d, %d] -> start idx [%d, %d] (row, col)\n", \
ref_tile_row_i, ref_tile_col_i, ref_tile_row_start_idx_i, ref_tile_col_start_idx_i );
// printf("\nRef img tile [%d, %d] -> start idx [%d, %d] (row, col)\n", \
// ref_tile_row_i, ref_tile_col_i, ref_tile_row_start_idx_i, ref_tile_col_start_idx_i );
// printf("\nRef img tile [%d, %d]\n", ref_tile_row_i, ref_tile_col_i );
// print_tile<uint16_t>( ref_img, curr_tile_size, ref_tile_row_start_idx_i, ref_tile_col_start_idx_i );
@ -410,21 +502,25 @@ void align_image_level( \
alt_tile_col_start_idx_i = 0;
if ( alt_tile_row_start_idx_i > alt_tile_row_idx_max )
{
int before = alt_tile_row_start_idx_i;
// int before = alt_tile_row_start_idx_i;
alt_tile_row_start_idx_i = alt_tile_row_idx_max;
// printf("@@ change start x from %d to %d\n", before, alt_tile_row_idx_max);
}
if ( alt_tile_col_start_idx_i > alt_tile_col_idx_max )
{
int before = alt_tile_col_start_idx_i;
// int before = alt_tile_col_start_idx_i;
alt_tile_col_start_idx_i = alt_tile_col_idx_max;
// printf("@@ change start y from %d to %d\n", before, alt_tile_col_idx_max );
}
// Explicitly caching reference image tile
cv::Mat ref_img_tile_i = extract_ref_img_tile( ref_img, ref_tile_row_start_idx_i, ref_tile_col_start_idx_i );
cv::Mat alt_img_search_i = extract_alt_img_search( alt_img_pad, alt_tile_row_start_idx_i, alt_tile_col_start_idx_i );
// Because alternative image is padded with search radious.
// Using same coordinate with reference image will automatically considered search radious * 2
//printf("Alt image tile [%d, %d]-> start idx [%d, %d]\n", \
ref_tile_row_i, ref_tile_col_i, alt_tile_row_start_idx_i, alt_tile_col_start_idx_i );
// printf("Alt image tile [%d, %d]-> start idx [%d, %d]\n", \
// ref_tile_row_i, ref_tile_col_i, alt_tile_row_start_idx_i, alt_tile_col_start_idx_i );
// printf("\nAlt image tile [%d, %d]\n", ref_tile_row_i, ref_tile_col_i );
// print_tile<uint16_t>( alt_img_pad, curr_tile_size + 2 * search_radiou, alt_tile_row_start_idx_i, alt_tile_col_start_idx_i );
@ -436,16 +532,23 @@ void align_image_level( \
{
for ( int search_col_j = 0; search_col_j < ( search_radiou * 2 + 1 ); search_col_j++ )
{
//printf("\n--->tile at [%d, %d] search (%d, %d)\n", \
ref_tile_row_i, ref_tile_col_i, search_row_j - search_radiou, search_col_j - search_radiou );
// printf("\n--->tile at [%d, %d] search (%d, %d)\n", \
// ref_tile_row_i, ref_tile_col_i, search_row_j - search_radiou, search_col_j - search_radiou );
// unsigned long long distance_j = distance_func_ptr( ref_img, alt_img_pad, \
// ref_tile_row_start_idx_i, ref_tile_col_start_idx_i, \
// alt_tile_row_start_idx_i + search_row_j, alt_tile_col_start_idx_i + search_col_j );
// unsigned long long distance_j = distance_func_ptr( ref_img_tile_i, alt_img_pad, \
// 0, 0, \
// alt_tile_row_start_idx_i + search_row_j, alt_tile_col_start_idx_i + search_col_j );
// TODO: currently distance is incorrect
unsigned long long distance_j = distance_func_ptr( ref_img, alt_img_pad, \
ref_tile_row_start_idx_i, ref_tile_col_start_idx_i, \
alt_tile_row_start_idx_i + search_row_j, alt_tile_col_start_idx_i + search_col_j );
unsigned long long distance_j = distance_func_ptr( ref_img_tile_i, alt_img_search_i, \
0, 0, \
search_row_j, search_col_j );
//printf("<---tile at [%d, %d] search (%d, %d), new dis %llu, old dis %llu\n", \
ref_tile_row_i, ref_tile_col_i, search_row_j - search_radiou, search_col_j - search_radiou, distance_j, min_distance_i );
// printf("<---tile at [%d, %d] search (%d, %d), new dis %llu, old dis %llu\n", \
// ref_tile_row_i, ref_tile_col_i, search_row_j - search_radiou, search_col_j - search_radiou, distance_j, min_distance_i );
// If this is smaller distance
if ( distance_j < min_distance_i )
@ -456,30 +559,30 @@ void align_image_level( \
}
// If same value, choose the one closer to the original tile location
// if ( distance_j == min_distance_i && min_distance_row_i != -1 && min_distance_col_i != -1 )
// {
// int prev_distance_row_2_ref = min_distance_row_i - search_radiou;
// int prev_distance_col_2_ref = min_distance_col_i - search_radiou;
// int curr_distance_row_2_ref = search_row_j - search_radiou;
// int curr_distance_col_2_ref = search_col_j - search_radiou;
if ( distance_j == min_distance_i && min_distance_row_i != -1 && min_distance_col_i != -1 )
{
int prev_distance_row_2_ref = min_distance_row_i - search_radiou;
int prev_distance_col_2_ref = min_distance_col_i - search_radiou;
int curr_distance_row_2_ref = search_row_j - search_radiou;
int curr_distance_col_2_ref = search_col_j - search_radiou;
// int prev_distance_2_ref_sqr = prev_distance_row_2_ref * prev_distance_row_2_ref + prev_distance_col_2_ref * prev_distance_col_2_ref;
// int curr_distance_2_ref_sqr = curr_distance_row_2_ref * curr_distance_row_2_ref + curr_distance_col_2_ref * curr_distance_col_2_ref;
int prev_distance_2_ref_sqr = prev_distance_row_2_ref * prev_distance_row_2_ref + prev_distance_col_2_ref * prev_distance_col_2_ref;
int curr_distance_2_ref_sqr = curr_distance_row_2_ref * curr_distance_row_2_ref + curr_distance_col_2_ref * curr_distance_col_2_ref;
// // previous min distance idx is farther away from ref tile start location
// if ( prev_distance_2_ref_sqr > curr_distance_2_ref_sqr )
// {
// // printf("@@@ Same distance %d, choose closer one (%d, %d) instead of (%d, %d)\n", \
// previous min distance idx is farther away from ref tile start location
if ( prev_distance_2_ref_sqr > curr_distance_2_ref_sqr )
{
// printf("@@@ Same distance %d, choose closer one (%d, %d) instead of (%d, %d)\n", \
// distance_j, search_row_j, search_col_j, min_distance_row_i, min_distance_col_i);
// min_distance_col_i = search_col_j;
// min_distance_row_i = search_row_j;
// }
// }
min_distance_col_i = search_col_j;
min_distance_row_i = search_row_j;
}
}
}
}
//printf("tile at (%d, %d) alignment (%d, %d)\n", \
ref_tile_row_i, ref_tile_col_i, min_distance_row_i, min_distance_col_i );
// printf("tile at (%d, %d) alignment (%d, %d)\n", \
// ref_tile_row_i, ref_tile_col_i, min_distance_row_i, min_distance_col_i );
int alignment_row_i = prev_alignment_row_i + min_distance_row_i - search_radiou;
int alignment_col_i = prev_alignment_col_i + min_distance_col_i - search_radiou;
@ -516,38 +619,6 @@ void align_image_level( \
}
static void build_per_pyramid_reftiles_start( \
std::vector<std::vector<std::vector<std::pair<int, int>>>>& per_pyramid_reftiles_start, \
const std::vector<std::vector<cv::Mat>>& per_grayimg_pyramid, \
const std::vector<int>& grayimg_tile_sizes )
{
per_pyramid_reftiles_start.resize( per_grayimg_pyramid.at(0).size() );
// Every image pyramid level
for ( int level_i = 0; level_i < per_grayimg_pyramid.at(0).size(); level_i++ )
{
int level_i_img_h = per_grayimg_pyramid.at(0).at( level_i ).size().height;
int level_i_img_w = per_grayimg_pyramid.at(0).at( level_i ).size().width;
int level_i_tile_size = grayimg_tile_sizes.at( level_i );
int num_tiles_h = level_i_img_h / (level_i_tile_size / 2) - 1;
int num_tiles_w = level_i_img_w / (level_i_tile_size / 2) - 1;
// Allocate memory
per_pyramid_reftiles_start.at( level_i ).resize( num_tiles_h, std::vector<std::pair<int, int>>( num_tiles_w ) );
for ( int tile_col_i = 0; tile_col_i < num_tiles_h; tile_col_i++ )
{
for ( int tile_row_j = 0; tile_row_j < num_tiles_w; tile_row_j++ )
{
per_pyramid_reftiles_start.at( level_i ).at( tile_col_i ).at( tile_row_j ) \
= std::make_pair<int, int>( tile_col_i * level_i_tile_size, tile_row_j * level_i_tile_size );
}
}
}
}
void align::process( const hdrplus::burst& burst_images, \
std::vector<std::vector<std::vector<std::pair<int, int>>>>& images_alignment )
@ -571,6 +642,8 @@ void align::process( const hdrplus::burst& burst_images, \
// exit(1);
per_grayimg_pyramid.resize( burst_images.num_images );
#pragma omp parallel for
for ( int img_idx = 0; img_idx < burst_images.num_images; ++img_idx )
{
// per_grayimg_pyramid[ img_idx ][ 0 ] is the original image

@ -1,5 +1,6 @@
#include <cstdio>
#include <string>
#include <omp.h>
#include <opencv2/opencv.hpp> // all opencv header
#include "hdrplus/burst.h"
#include "hdrplus/utility.h"
@ -30,7 +31,7 @@ burst::burst( const std::string& burst_path, const std::string& reference_image_
// Find reference image path in input directory
// reference image path need to be absolute path
reference_image_idx = -1;
for ( int i = 0; i < bayer_image_paths.size(); ++i )
for ( size_t i = 0; i < bayer_image_paths.size(); ++i )
{
if ( bayer_image_paths[ i ] == reference_image_path )
{

@ -24,7 +24,7 @@ namespace hdrplus
// Get raw channels
std::vector<cv::Mat> channels(4);
hdrplus::extract_rgb_fmom_bayer<uint16_t>(reference_image, channels[0], channels[2], channels[1], channels[3]);
hdrplus::extract_rgb_from_bayer<uint16_t>(reference_image, channels[0], channels[1], channels[2], channels[3]);
std::vector<cv::Mat> processed_channels(4);
// For each channel, perform denoising and merge
@ -44,7 +44,7 @@ namespace hdrplus
//get alternate image
cv::Mat alt_image = burst_images.bayer_images_pad[j];
std::vector<cv::Mat> alt_channels(4);
hdrplus::extract_rgb_fmom_bayer<uint16_t>(alt_image, alt_channels[0], alt_channels[1], alt_channels[2], alt_channels[3]);
hdrplus::extract_rgb_from_bayer<uint16_t>(alt_image, alt_channels[0], alt_channels[1], alt_channels[2], alt_channels[3]);
alternate_channel_i_list.push_back(alt_channels[i]);
}

@ -21,6 +21,8 @@ void test_align_one_level(int argc, char** argv)
hdrplus::align align_module;
align_module.process( burst_images, alignments );
exit(1);
// Access alternative image tile in each channel
// Below code can be use in merging part
for ( int img_idx = 0; img_idx < burst_images.num_images; ++img_idx )
@ -36,14 +38,14 @@ void test_align_one_level(int argc, char** argv)
// Create RGB channel
std::vector<cv::Mat> rggb_imgs( 4 );
hdrplus::extract_rgb_fmom_bayer<uint16_t>( bayer_image_pad, rggb_imgs.at(0), rggb_imgs.at(1), rggb_imgs.at(2), rggb_imgs.at(3) );
hdrplus::extract_rgb_from_bayer<uint16_t>( bayer_image_pad, rggb_imgs.at(0), rggb_imgs.at(1), rggb_imgs.at(2), rggb_imgs.at(3) );
// Get tile of each channel with the alignments
int tilesize = 16; // tile size of grayscale image
int num_tiles_h = rggb_imgs.at(0).size().height / ( tilesize / 2 ) - 1;
int num_tiles_w = rggb_imgs.at(0).size().width / ( tilesize / 2 ) - 1;
for ( int img_channel = 0; img_channel < rggb_imgs.size(); ++img_channel )
for ( int img_channel = 0; img_channel < int(rggb_imgs.size()); ++img_channel )
{
for ( int tile_row_i = 0; tile_row_i < num_tiles_h; ++tile_row_i )
{

@ -4,7 +4,6 @@
#include <opencv2/opencv.hpp>
#include "hdrplus/utility.h"
void test_downsample_nearest_neighbour( )
{
printf("\n###Test test_box_filter_kxk()###\n");
@ -91,7 +90,7 @@ void test_extract_rgb_from_bayer()
printf("\nbayer cv::Mat is \n");
hdrplus::print_cvmat<uint16_t>( bayer_img );
hdrplus::extract_rgb_fmom_bayer<uint16_t>( bayer_img, red_img, green_img1, green_img2, blue_img );
hdrplus::extract_rgb_from_bayer<uint16_t>( bayer_img, red_img, green_img1, green_img2, blue_img );
printf("\nRed cv::Mat is \n");
hdrplus::print_cvmat<uint16_t>( red_img );

Loading…
Cancel
Save