|
|
|
@ -379,16 +379,75 @@ std::pair<double, double> merge::getNoiseParams( int ISO, \
|
|
|
|
|
double lambda_shot, lambda_read;
|
|
|
|
|
std::tie(lambda_shot, lambda_read) = burst_images.bayer_images[burst_images.reference_image_idx].get_noise_params();
|
|
|
|
|
|
|
|
|
|
// Call merge on each channel
|
|
|
|
|
// Get padded bayer image
|
|
|
|
|
cv::Mat reference_image = burst_images.bayer_images_pad[burst_images.reference_image_idx];
|
|
|
|
|
reference_image.convertTo(reference_image, CV_32F);
|
|
|
|
|
// cv::imwrite("ref.jpg", reference_image);
|
|
|
|
|
|
|
|
|
|
// Get raw channels
|
|
|
|
|
std::vector<ushort> channels[4];
|
|
|
|
|
|
|
|
|
|
for (int y = 0; y < reference_image.rows; ++y) {
|
|
|
|
|
for (int x = 0; x < reference_image.cols; ++x) {
|
|
|
|
|
if (y % 2 == 0) {
|
|
|
|
|
if (x % 2 == 0) {
|
|
|
|
|
channels[0].push_back(reference_image.at<ushort>(y, x));
|
|
|
|
|
} else {
|
|
|
|
|
channels[1].push_back(reference_image.at<ushort>(y, x));
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (x % 2 == 0) {
|
|
|
|
|
channels[2].push_back(reference_image.at<ushort>(y, x));
|
|
|
|
|
} else {
|
|
|
|
|
channels[3].push_back(reference_image.at<ushort>(y, x));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// For each channel, perform denoising and merge
|
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
|
// Get channel mat
|
|
|
|
|
cv::Mat channel_i(reference_image.rows / 2, reference_image.cols / 2, CV_16U, channels[i].data());
|
|
|
|
|
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
|
|
|
|
|
|
|
|
|
|
// Get Channels
|
|
|
|
|
// cv::Mat channel_0(reference_image.rows, reference_image.cols, CV_32F, (uchar*)reference_image.data, 2 * sizeof(float));
|
|
|
|
|
// cv::cvtColor(outputImg, outputImg, cv::COLOR_GRAY2RGB);
|
|
|
|
|
// Apply merging on the channel
|
|
|
|
|
cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i);
|
|
|
|
|
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
|
|
|
|
|
|
|
|
|
|
// Put channel raw data back to channels
|
|
|
|
|
channels[i] = merged_channel.reshape(1, merged_channel.total());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write all channels back to a bayer mat
|
|
|
|
|
std::vector<ushort> merged_raw;
|
|
|
|
|
|
|
|
|
|
for (int y = 0; y < reference_image.rows; ++y) {
|
|
|
|
|
for (int x = 0; x < reference_image.cols; ++x) {
|
|
|
|
|
if (y % 2 == 0) {
|
|
|
|
|
if (x % 2 == 0) {
|
|
|
|
|
merged_raw.push_back(channels[0][(y/2)*(reference_image.cols/2) + (x/2)]);
|
|
|
|
|
} else {
|
|
|
|
|
merged_raw.push_back(channels[1][(y/2)*(reference_image.cols/2) + (x/2)]);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (x % 2 == 0) {
|
|
|
|
|
merged_raw.push_back(channels[2][(y/2)*(reference_image.cols/2) + (x/2)]);
|
|
|
|
|
} else {
|
|
|
|
|
merged_raw.push_back(channels[3][(y/2)*(reference_image.cols/2) + (x/2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//cv::Mat merged_channel = processChannel(burst_images, alignments, channel_0);
|
|
|
|
|
// Create merged mat
|
|
|
|
|
cv::Mat merged(reference_image.rows, reference_image.cols, CV_16U, merged_raw.data());
|
|
|
|
|
// cv::imwrite("merged.jpg", merged);
|
|
|
|
|
|
|
|
|
|
// Remove padding
|
|
|
|
|
std::vector<int> padding = burst_images.padding_info_bayer;
|
|
|
|
|
cv::Range horizontal = cv::Range(padding[2], reference_image.cols - padding[3]);
|
|
|
|
|
cv::Range vertical = cv::Range(padding[0], reference_image.rows - padding[1]);
|
|
|
|
|
burst_images.merged_bayer_image = merged(vertical, horizontal);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<cv::Mat> merge::getReferenceTiles(cv::Mat reference_image) {
|
|
|
|
@ -455,15 +514,15 @@ cv::Mat merge::mergeTiles(std::vector<cv::Mat> tiles, int num_rows, int num_cols
|
|
|
|
|
return img_original;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Mat merge::processChannel( const hdrplus::burst& burst_images, \
|
|
|
|
|
cv::Mat merge::processChannel( hdrplus::burst& burst_images, \
|
|
|
|
|
std::vector<std::vector<std::vector<std::pair<int, int>>>>& alignments, \
|
|
|
|
|
cv::Mat channel_image) {
|
|
|
|
|
|
|
|
|
|
std::vector<cv::Mat> reference_tiles = getReferenceTiles(channel_image);
|
|
|
|
|
|
|
|
|
|
// Temporal Denoising
|
|
|
|
|
// TODO: Temporal Denoising
|
|
|
|
|
|
|
|
|
|
// Spatial Denoising
|
|
|
|
|
// TODO: Spatial Denoising
|
|
|
|
|
|
|
|
|
|
// Process tiles through 2D cosine window
|
|
|
|
|
std::vector<cv::Mat> windowed_tiles;
|
|
|
|
@ -472,17 +531,7 @@ cv::Mat merge::processChannel( const hdrplus::burst& burst_images, \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Merge tiles
|
|
|
|
|
cv::Mat merged = mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
|
|
|
|
|
|
|
|
|
|
// cv::Mat outputImg = channel_image.clone();
|
|
|
|
|
// cv::cvtColor(outputImg, outputImg, cv::COLOR_GRAY2RGB);
|
|
|
|
|
// cv::imwrite("ref.jpg", outputImg);
|
|
|
|
|
// cv::Mat outputImg1 = reference_tiles[0].clone();
|
|
|
|
|
// cv::Mat outputImg1 = cosineWindow2D(reference_tiles[0].clone());
|
|
|
|
|
// cv::Mat outputImg1 = cat2Dtiles(tiles_2D);
|
|
|
|
|
// cv::cvtColor(merged, merged, cv::COLOR_GRAY2RGB);
|
|
|
|
|
// cv::imwrite("tile0.jpg", merged);
|
|
|
|
|
return merged;
|
|
|
|
|
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace hdrplus
|
|
|
|
|