|
|
|
@ -196,7 +196,7 @@ namespace hdrplus
|
|
|
|
|
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
|
|
|
|
|
//reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
|
|
|
|
|
////
|
|
|
|
|
|
|
|
|
|
reference_tiles_DFT = spatial_denoised_tiles;
|
|
|
|
|
// Apply IFFT on reference tiles (frequency to spatial)
|
|
|
|
|
std::vector<cv::Mat> denoised_tiles;
|
|
|
|
|
for (auto dft_tile : reference_tiles_DFT) {
|
|
|
|
@ -218,91 +218,138 @@ namespace hdrplus
|
|
|
|
|
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
|
|
|
|
|
// //goal: temporially denoise using the weiner filter
|
|
|
|
|
// //input:
|
|
|
|
|
// //1. array of 2D dft tiles of the reference image
|
|
|
|
|
// //2. array of 2D dft tiles ocf the aligned alternate image
|
|
|
|
|
// //3. estimated noise varaince
|
|
|
|
|
// //4. temporal factor
|
|
|
|
|
// //return: merged image patches dft
|
|
|
|
|
std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
|
|
|
|
|
//goal: temporially denoise using the weiner filter
|
|
|
|
|
//input:
|
|
|
|
|
//1. array of 2D dft tiles of the reference image
|
|
|
|
|
//2. array of 2D dft tiles ocf the aligned alternate image
|
|
|
|
|
//3. estimated noise varaince
|
|
|
|
|
//4. temporal factor
|
|
|
|
|
//return: merged image patches dft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// //tile_size = TILE_SIZE;
|
|
|
|
|
//tile_size = TILE_SIZE;
|
|
|
|
|
|
|
|
|
|
// double temporal_factor = 8.0 //8 by default
|
|
|
|
|
|
|
|
|
|
// double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// //start calculating the merged image tiles fft
|
|
|
|
|
//start calculating the merged image tiles fft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// //get the tiles of the alternate image as a list
|
|
|
|
|
//get the tiles of the alternate image as a list
|
|
|
|
|
|
|
|
|
|
// std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
|
|
|
|
|
// std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
|
|
|
|
|
std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
|
|
|
|
|
std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
|
|
|
|
|
|
|
|
|
|
// for (auto alt_img_channel : alternate_channel_i_list) {
|
|
|
|
|
// std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
|
|
|
|
|
// alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
|
|
|
|
|
for (auto alt_img_channel : alternate_channel_i_list) {
|
|
|
|
|
std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
|
|
|
|
|
alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> alternate_tiles_DFT_list;
|
|
|
|
|
// for (auto alt_tile : alt_img_channel_tile) {
|
|
|
|
|
// cv::Mat alt_tile_DFT;
|
|
|
|
|
// alt_tile.convertTo(alt_tile_DFT, CV_32F);
|
|
|
|
|
// cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
|
|
|
|
|
// alternate_tiles_DFT_list.push_back(alt_tile_DFT);
|
|
|
|
|
// }
|
|
|
|
|
// alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
|
|
|
|
|
// }
|
|
|
|
|
std::vector<cv::Mat> alternate_tiles_DFT;
|
|
|
|
|
for (auto alt_tile : alt_img_channel_tile) {
|
|
|
|
|
cv::Mat alt_tile_DFT;
|
|
|
|
|
alt_tile.convertTo(alt_tile_DFT, CV_32F);
|
|
|
|
|
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
|
|
|
|
|
alternate_tiles_DFT.push_back(alt_tile_DFT);
|
|
|
|
|
}
|
|
|
|
|
alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// //get the dft of the alternate image
|
|
|
|
|
// //std::vector<cv::Mat> alternate_tiles_DFT;
|
|
|
|
|
//get the dft of the alternate image
|
|
|
|
|
//std::vector<cv::Mat> alternate_tiles_DFT;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// //std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
|
|
|
|
|
//std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
|
|
|
|
|
|
|
|
|
|
// //find reference_tiles_DFT - alternate_tiles_DFT_list
|
|
|
|
|
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
|
|
|
|
|
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
|
|
|
|
|
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
|
|
|
|
|
// tile_difference_list.push_back(single_tile_difference);
|
|
|
|
|
// }
|
|
|
|
|
//find reference_tiles_DFT - alternate_tiles_DFT_list
|
|
|
|
|
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
|
|
|
|
|
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
|
|
|
|
|
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
|
|
|
|
|
// tile_difference_list.push_back(single_tile_difference);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// //find the squared absolute difference across all the tiles
|
|
|
|
|
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
|
|
|
// std::vector<cv::Mat> copy_diff = tile_differences.clone(); //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
|
|
|
|
|
|
|
|
// // std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
|
|
|
//get the real and imaginary components (real**2 + imag**2)
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
|
|
|
// std::vector<cv::Mat> absolute_distance_list;
|
|
|
|
|
// for (auto individual_difference : tile_difference_list) {
|
|
|
|
|
// cv::Mat copy_diff = individual_difference.clone();
|
|
|
|
|
// for (int i = 0 ; i < individual_difference.rows; i++ ) {
|
|
|
|
|
// //std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
|
|
|
|
|
// for (int j = 0; j < individual_difference.cols*individual_difference.channels(); j++) {
|
|
|
|
|
// std::complex<double> single_complex_num = individual_difference.at<std::complex<double>>(i,j);
|
|
|
|
|
// copy_diff.at<std::complex<double>>(i,j) = math.pow(single_complex_num.real(),2)+math.pow(single_complex_num.imag(),2); //.real and .imag
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
|
|
|
|
|
// absolute_distance_list.push_back(copy_diff);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// //get the real and imaginary components
|
|
|
|
|
// /*
|
|
|
|
|
// std::vector<std::vector<cv::Mat>> absolute_difference_list;
|
|
|
|
|
// for (auto individual_difference : tile_difference_list) {
|
|
|
|
|
// for (int i =0; i < individual_difference.rows; i++ ) {
|
|
|
|
|
// std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
|
|
|
|
|
// for (int j = 0; j< individual_difference.cols*individual_difference.channels(); j++) {
|
|
|
|
|
// row_ptr = math.pow(individual_difference.at<std::complex<double>>(i,j).real(),2)+math.pow(individual_difference.at<std::complex<double>>(i,j).imag(),2); //.real and .imag
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
|
|
|
|
|
// absolute_difference_list.push_back(single_tile_difference);
|
|
|
|
|
// }
|
|
|
|
|
// */
|
|
|
|
|
//get shrinkage operator
|
|
|
|
|
//std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
|
|
|
|
|
//std::vector<cv::Mat> A;
|
|
|
|
|
|
|
|
|
|
//get tile_sq_asolute_diff+noise_variance
|
|
|
|
|
// std::vector<cv::Mat> A_denominator;
|
|
|
|
|
// for (int i = 0; i < absolute_distance_list.size();i++){
|
|
|
|
|
// cv::Mat noise_var_mat( noise_variance[i],absolute_distance_list[i].rows,absolute_distance_list[i].cols,CV_16U);
|
|
|
|
|
// cv::Mat single_denominator = absolute_distance_list[i] + noise_var_mat;
|
|
|
|
|
// A_denominator.push_back(single_denominator);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// for (auto individual_distance : absolute_distance_list) {
|
|
|
|
|
// cv::Mat single_A =
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
//std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
|
|
|
|
|
|
|
|
|
|
// //find the squared absolute difference across all the tiles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
|
|
|
|
|
//calculate noise scaling
|
|
|
|
|
double temporal_factor = 8.0 //8 by default
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
|
|
|
|
|
double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
|
|
|
|
|
|
|
|
|
|
// return merged_image_tiles_fft
|
|
|
|
|
//loop across tiles
|
|
|
|
|
|
|
|
|
|
// }
|
|
|
|
|
// Calculate absolute difference
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < tiles.size(); ++i) {
|
|
|
|
|
cv::Mat tile = tiles[i];
|
|
|
|
|
//float coeff = noise_variance[i] / num_alts * spatial_noise_scaling;
|
|
|
|
|
|
|
|
|
|
// Calculate absolute difference
|
|
|
|
|
cv::Mat complexMats[2];
|
|
|
|
|
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
|
|
|
|
|
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
|
|
|
|
|
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
|
|
|
|
|
|
|
|
|
|
//find shrinkage operator A
|
|
|
|
|
|
|
|
|
|
//create a mat of only the noise variance
|
|
|
|
|
cv::Mat noise_var_mat(noise_variance[i]*temporal_noise_scaling,absolute_diff.rows,absolute_diff.cols,CV_16U);
|
|
|
|
|
cv::Mat A_denom = absolute_diff+noise_var_mat;
|
|
|
|
|
cv::Mat A = cv::divide(absolute_diff,A_denom);
|
|
|
|
|
|
|
|
|
|
//update reference DFT
|
|
|
|
|
reference_tiles_DFT += alternate_tiles_DFT_list + cv::mul(A,absolute_diff);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//get average
|
|
|
|
|
reference_tiles_DFT = cv::divide(reference_tiles_DFT,tiles.size())
|
|
|
|
|
|
|
|
|
|
return reference_tiles_DFT
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// std::vector<cv::Mat> spatial_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
|
|
|
|
|
|
|
|
|
|