Updating temporal denoising

Updating the temporal denoising before committing and pulling in change for spatial denoising.
main
cvachha 3 years ago committed by Haohua-Lyu
parent 26cfbb1fa6
commit 9e682d4ab1

@ -196,7 +196,7 @@ namespace hdrplus
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image //apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
//reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised //reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
//// ////
reference_tiles_DFT = spatial_denoised_tiles;
// Apply IFFT on reference tiles (frequency to spatial) // Apply IFFT on reference tiles (frequency to spatial)
std::vector<cv::Mat> denoised_tiles; std::vector<cv::Mat> denoised_tiles;
for (auto dft_tile : reference_tiles_DFT) { for (auto dft_tile : reference_tiles_DFT) {
@ -218,91 +218,138 @@ namespace hdrplus
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols); return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
} }
// std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) { std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {
// //goal: temporially denoise using the weiner filter //goal: temporially denoise using the weiner filter
// //input: //input:
// //1. array of 2D dft tiles of the reference image //1. array of 2D dft tiles of the reference image
// //2. array of 2D dft tiles ocf the aligned alternate image //2. array of 2D dft tiles ocf the aligned alternate image
// //3. estimated noise varaince //3. estimated noise varaince
// //4. temporal factor //4. temporal factor
// //return: merged image patches dft //return: merged image patches dft
// //tile_size = TILE_SIZE; //tile_size = TILE_SIZE;
// double temporal_factor = 8.0 //8 by default
// double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
// //start calculating the merged image tiles fft //start calculating the merged image tiles fft
// //get the tiles of the alternate image as a list //get the tiles of the alternate image as a list
// std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
// std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
// for (auto alt_img_channel : alternate_channel_i_list) { for (auto alt_img_channel : alternate_channel_i_list) {
// std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
// alternate_channel_i_tile_list.push_back(alt_img_channel_tile) alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
// std::vector<cv::Mat> alternate_tiles_DFT_list; std::vector<cv::Mat> alternate_tiles_DFT;
// for (auto alt_tile : alt_img_channel_tile) { for (auto alt_tile : alt_img_channel_tile) {
// cv::Mat alt_tile_DFT; cv::Mat alt_tile_DFT;
// alt_tile.convertTo(alt_tile_DFT, CV_32F); alt_tile.convertTo(alt_tile_DFT, CV_32F);
// cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT); cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
// alternate_tiles_DFT_list.push_back(alt_tile_DFT); alternate_tiles_DFT.push_back(alt_tile_DFT);
// } }
// alternate_tiles_DFT_list.push_back(alternate_tiles_DFT); alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
// } }
// //get the dft of the alternate image //get the dft of the alternate image
// //std::vector<cv::Mat> alternate_tiles_DFT; //std::vector<cv::Mat> alternate_tiles_DFT;
// //std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list; //std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
// //find reference_tiles_DFT - alternate_tiles_DFT_list //find reference_tiles_DFT - alternate_tiles_DFT_list
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences // std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) { // for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT; // std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
// tile_difference_list.push_back(single_tile_difference); // tile_difference_list.push_back(single_tile_difference);
// } // }
// //find the squared absolute difference across all the tiles
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// std::vector<cv::Mat> copy_diff = tile_differences.clone(); //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
// // std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist //get the real and imaginary components (real**2 + imag**2)
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist // std::vector<cv::Mat> absolute_distance_list;
// for (auto individual_difference : tile_difference_list) {
// cv::Mat copy_diff = individual_difference.clone();
// for (int i = 0 ; i < individual_difference.rows; i++ ) {
// //std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
// for (int j = 0; j < individual_difference.cols*individual_difference.channels(); j++) {
// std::complex<double> single_complex_num = individual_difference.at<std::complex<double>>(i,j);
// copy_diff.at<std::complex<double>>(i,j) = math.pow(single_complex_num.real(),2)+math.pow(single_complex_num.imag(),2); //.real and .imag
// }
// }
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
// absolute_distance_list.push_back(copy_diff);
// }
// //get the real and imaginary components
// /*
// std::vector<std::vector<cv::Mat>> absolute_difference_list;
// for (auto individual_difference : tile_difference_list) {
// for (int i =0; i < individual_difference.rows; i++ ) {
// std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
// for (int j = 0; j< individual_difference.cols*individual_difference.channels(); j++) {
// row_ptr = math.pow(individual_difference.at<std::complex<double>>(i,j).real(),2)+math.pow(individual_difference.at<std::complex<double>>(i,j).imag(),2); //.real and .imag
// }
// }
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag //get shrinkage operator
// absolute_difference_list.push_back(single_tile_difference); //std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
// } //std::vector<cv::Mat> A;
// */
//get tile_sq_asolute_diff+noise_variance
// std::vector<cv::Mat> A_denominator;
// for (int i = 0; i < absolute_distance_list.size();i++){
// cv::Mat noise_var_mat( noise_variance[i],absolute_distance_list[i].rows,absolute_distance_list[i].cols,CV_16U);
// cv::Mat single_denominator = absolute_distance_list[i] + noise_var_mat;
// A_denominator.push_back(single_denominator);
// }
// for (auto individual_distance : absolute_distance_list) {
// cv::Mat single_A =
// }
//std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
// //find the squared absolute difference across all the tiles
// std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance) //calculate noise scaling
double temporal_factor = 8.0 //8 by default
// std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences; double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
// return merged_image_tiles_fft //loop across tiles
// } // Calculate absolute difference
for (int i = 0; i < tiles.size(); ++i) {
cv::Mat tile = tiles[i];
//float coeff = noise_variance[i] / num_alts * spatial_noise_scaling;
// Calculate absolute difference
cv::Mat complexMats[2];
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
//find shrinkage operator A
//create a mat of only the noise variance
cv::Mat noise_var_mat(noise_variance[i]*temporal_noise_scaling,absolute_diff.rows,absolute_diff.cols,CV_16U);
cv::Mat A_denom = absolute_diff+noise_var_mat;
cv::Mat A = cv::divide(absolute_diff,A_denom);
//update reference DFT
reference_tiles_DFT += alternate_tiles_DFT_list + cv::mul(A,absolute_diff);
}
//get average
reference_tiles_DFT = cv::divide(reference_tiles_DFT,tiles.size())
return reference_tiles_DFT
}
// std::vector<cv::Mat> spatial_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) { // std::vector<cv::Mat> spatial_denoise(std::vector<cv::Mat> reference_tiles, std::vector<cv::Mat> reference_tiles_DFT, std::vector<float> noise_varaince) {

Loading…
Cancel
Save