upsample with nbr

main
Xiao Song 3 years ago
parent 8f9ee70cc7
commit b9d472fe46

@ -93,11 +93,11 @@ static void build_per_grayimg_pyramid( \
case 2:
// printf("(2) downsample with gaussian sigma %.2f", inv_scale_factors[ i ] * 0.5 );
// // Gaussian blur
//cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
// // Downsample
//downsample_image = downsample_nearest_neighbour<uint16_t, 2>( blur_image );
downsample_image = downsample_nearest_neighbour<uint16_t, 2>( images_pyramid.at( i-1 ) );
downsample_image = downsample_nearest_neighbour<uint16_t, 2>( blur_image );
// downsample_image = downsample_nearest_neighbour<uint16_t, 2>( images_pyramid.at( i-1 ) );
// Add
images_pyramid.at( i ) = downsample_image.clone();
@ -105,9 +105,9 @@ static void build_per_grayimg_pyramid( \
break;
case 4:
// printf("(4) downsample with gaussian sigma %.2f", inv_scale_factors[ i ] * 0.5 );
//cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
//downsample_image = downsample_nearest_neighbour<uint16_t, 4>( blur_image );
downsample_image = downsample_nearest_neighbour<uint16_t, 4>( images_pyramid.at( i-1 ) );
cv::GaussianBlur( images_pyramid.at( i-1 ), blur_image, cv::Size(0, 0), inv_scale_factors[ i ] * 0.5 );
downsample_image = downsample_nearest_neighbour<uint16_t, 4>( blur_image );
// downsample_image = downsample_nearest_neighbour<uint16_t, 4>( images_pyramid.at( i-1 ) );
images_pyramid.at( i ) = downsample_image.clone();
break;
default:
@ -117,38 +117,46 @@ static void build_per_grayimg_pyramid( \
}
template< int pyramid_scale_factor_prev_curr, int tilesize_scale_factor_prev_curr >
static bool operator!=( const std::pair<int, int>& lhs, const std::pair<int, int>& rhs )
{
return lhs.first != rhs.first || lhs.second != rhs.second;
}
template< int pyramid_scale_factor_prev_curr, int tilesize_scale_factor_prev_curr, int tile_size >
static void build_upsampled_prev_aligement( \
std::vector<std::vector<std::pair<int, int>>>& src_alignment, \
std::vector<std::vector<std::pair<int, int>>>& dst_alignment,
int num_tiles_h, int num_tiles_w )
const std::vector<std::vector<std::pair<int, int>>>& src_alignment, \
std::vector<std::vector<std::pair<int, int>>>& dst_alignment, \
int num_tiles_h, int num_tiles_w, \
const cv::Mat& ref_img, const cv::Mat& alt_img, \
bool consider_nbr = false )
{
int src_height = src_alignment.size();
int src_width = src_alignment[ 0 ].size();
int src_num_tiles_h = src_alignment.size();
int src_num_tiles_w = src_alignment[ 0 ].size();
constexpr int repeat_factor = pyramid_scale_factor_prev_curr / tilesize_scale_factor_prev_curr;
// printf("build_upsampled_prev_aligement with scale factor %d, repeat factor %d, tile size factor %d\n", \
// pyramid_scale_factor_prev_curr, repeat_factor, tilesize_scale_factor_prev_curr );
int dst_height = src_height * repeat_factor;
int dst_width = src_width * repeat_factor;
int dst_num_tiles_main_h = src_num_tiles_h * repeat_factor;
int dst_num_tiles_main_w = src_num_tiles_w * repeat_factor;
if ( dst_height > num_tiles_h || dst_width > num_tiles_w )
if ( dst_num_tiles_main_h > num_tiles_h || dst_num_tiles_main_w > num_tiles_w )
{
throw std::runtime_error("current level number of tiles smaller than upsampled tiles\n");
}
// Allocate data for dst_alignment
// NOTE: number of tiles h, number of tiles w might be different from dst_height, dst_width
// For tiles between num_tile_h and dst_height, use (0,0)
// NOTE: number of tiles h, number of tiles w might be different from dst_num_tiles_main_h, dst_num_tiles_main_w
// For tiles between num_tile_h and dst_num_tiles_main_h, use (0,0)
dst_alignment.resize( num_tiles_h, std::vector<std::pair<int, int>>( num_tiles_w, std::pair<int, int>(0, 0) ) );
// Upsample alignment
#pragma omp parallel for collapse(2)
for ( int row_i = 0; row_i < src_height; row_i++ )
for ( int row_i = 0; row_i < src_num_tiles_h; row_i++ )
{
for ( int col_i = 0; col_i < src_width; col_i++ )
for ( int col_i = 0; col_i < src_num_tiles_w; col_i++ )
{
// Scale alignment
std::pair<int, int> align_i = src_alignment[ row_i ][ col_i ];
@ -169,128 +177,95 @@ static void build_upsampled_prev_aligement( \
}
}
}
}
static bool operator==( const std::pair<int, int>& lhs, const std::pair<int, int>& rhs )
{
return lhs.first == rhs.first && lhs.second == rhs.second;
}
static bool operator!=( const std::pair<int, int>& lhs, const std::pair<int, int>& rhs )
{
return lhs.first != rhs.first || lhs.second != rhs.second;
}
template< int tile_size >
static void build_alignment_consider_neighbour( \
std::vector<std::vector<std::pair<int, int>>>& src_alignment, \
std::vector<std::vector<std::pair<int, int>>>& dst_alignment,
const cv::Mat& ref_img, const cv::Mat& alt_img )
{
int num_tiles_h = src_alignment.size();
int num_tiles_w = src_alignment.at( 0 ).size();
// Distance function
unsigned long long (*distance_func_ptr)(const cv::Mat&, const cv::Mat&, int, int, int, int) = \
&l1_distance<uint16_t, unsigned long long, tile_size>;
if ( consider_nbr )
{
// Copy consurtctor
std::vector<std::vector<std::pair<int, int>>> upsampled_alignment{ dst_alignment };
// Copy the alignment information
// Below double for loop will only replace the change one
dst_alignment = src_alignment;
// Distance function
unsigned long long (*distance_func_ptr)(const cv::Mat&, const cv::Mat&, int, int, int, int) = \
&l1_distance<uint16_t, unsigned long long, tile_size>;
// Main part of the loop
for ( int tile_row_i = 1; tile_row_i < num_tiles_h - 1; tile_row_i++ )
{
for ( int tile_col_i = 1; tile_col_i < num_tiles_w - 1; tile_col_i++ )
#pragma omp parallel for collapse(2)
for ( int tile_row_i = 0; tile_row_i < num_tiles_h; tile_row_i++ )
{
const auto& curr_align_i = src_alignment[ tile_row_i ][ tile_col_i ];
for ( int tile_col_i = 0; tile_col_i < num_tiles_w; tile_col_i++ )
{
const auto& curr_align_i = upsampled_alignment[ tile_row_i ][ tile_col_i ];
// Container for nbr alignment pair
std::vector<std::pair<int, int>> nbrs_align_i;
// Container for nbr alignment pair
std::vector<std::pair<int, int>> nbrs_align_i;
// Consider 4 neighbour's alignment
// Only compute distance if alignment is different
const auto& nbr1_align_i = src_alignment[ tile_row_i + 0 ][ tile_col_i - 1 ];
if ( curr_align_i != nbr1_align_i ) nbrs_align_i.emplace_back( nbr1_align_i );
// Consider 4 neighbour's alignment
// Only compute distance if alignment is different
if ( tile_col_i > 0 )
{
const auto& nbr1_align_i = upsampled_alignment[ tile_row_i + 0 ][ tile_col_i - 1 ];
if ( curr_align_i != nbr1_align_i ) nbrs_align_i.emplace_back( nbr1_align_i );
}
const auto& nbr2_align_i = src_alignment[ tile_row_i + 0 ][ tile_col_i + 1 ];
if ( curr_align_i != nbr2_align_i ) nbrs_align_i.emplace_back( nbr2_align_i );
if ( tile_col_i < num_tiles_w - 1 )
{
const auto& nbr2_align_i = upsampled_alignment[ tile_row_i + 0 ][ tile_col_i + 1 ];
if ( curr_align_i != nbr2_align_i ) nbrs_align_i.emplace_back( nbr2_align_i );
}
const auto& nbr3_align_i = src_alignment[ tile_row_i - 1 ][ tile_col_i + 0 ];
if ( curr_align_i != nbr3_align_i ) nbrs_align_i.emplace_back( nbr3_align_i );
if ( tile_row_i > 0 )
{
const auto& nbr3_align_i = upsampled_alignment[ tile_row_i - 1 ][ tile_col_i + 0 ];
if ( curr_align_i != nbr3_align_i ) nbrs_align_i.emplace_back( nbr3_align_i );
}
const auto& nbr4_align_i = src_alignment[ tile_row_i + 1 ][ tile_col_i + 0 ];
if ( curr_align_i != nbr4_align_i ) nbrs_align_i.emplace_back( nbr4_align_i );
if ( tile_row_i < num_tiles_h - 1 )
{
const auto& nbr4_align_i = upsampled_alignment[ tile_row_i + 1 ][ tile_col_i + 0 ];
if ( curr_align_i != nbr4_align_i ) nbrs_align_i.emplace_back( nbr4_align_i );
}
// If there is a nbr alignment that need to be considered. Compute distance
if ( ! nbrs_align_i.empty() )
{
int ref_tile_row_start_idx_i = tile_row_i * tile_size / 2;
int ref_tile_col_start_idx_i = tile_col_i * tile_size / 2;
// curr_align_i's distance
auto curr_align_i_distance = distance_func_ptr(
ref_img, alt_img, \
ref_tile_row_start_idx_i, \
ref_tile_col_start_idx_i, \
ref_tile_row_start_idx_i + curr_align_i.first, \
ref_tile_col_start_idx_i + curr_align_i.second );
for ( const auto& nbr_align_i : nbrs_align_i )
// If there is a nbr alignment that need to be considered. Compute distance
if ( ! nbrs_align_i.empty() )
{
auto nbr_align_i_distance = distance_func_ptr(
int ref_tile_row_start_idx_i = tile_row_i * tile_size / 2;
int ref_tile_col_start_idx_i = tile_col_i * tile_size / 2;
// curr_align_i's distance
auto curr_align_i_distance = distance_func_ptr(
ref_img, alt_img, \
ref_tile_row_start_idx_i, \
ref_tile_col_start_idx_i, \
ref_tile_row_start_idx_i + nbr_align_i.first, \
ref_tile_col_start_idx_i + nbr_align_i.second );
ref_tile_row_start_idx_i + curr_align_i.first, \
ref_tile_col_start_idx_i + curr_align_i.second );
if ( nbr_align_i_distance < curr_align_i_distance )
for ( const auto& nbr_align_i : nbrs_align_i )
{
printf("tile [%d, %d] update align, prev align (%d, %d) curr align (%d, %d), prev distance %d curr distance %d\n", \
tile_row_i, tile_col_i, \
curr_align_i.first, curr_align_i.second, \
nbr_align_i.first, nbr_align_i.second, \
int(curr_align_i_distance), int(nbr_align_i_distance) );
dst_alignment[ tile_row_i ][ tile_col_i ] = nbr_align_i;
curr_align_i_distance = nbr_align_i_distance;
auto nbr_align_i_distance = distance_func_ptr(
ref_img, alt_img, \
ref_tile_row_start_idx_i, \
ref_tile_col_start_idx_i, \
ref_tile_row_start_idx_i + nbr_align_i.first, \
ref_tile_col_start_idx_i + nbr_align_i.second );
if ( nbr_align_i_distance < curr_align_i_distance )
{
#ifdef NDEBUG
printf("tile [%d, %d] update align, prev align (%d, %d) curr align (%d, %d), prev distance %d curr distance %d\n", \
tile_row_i, tile_col_i, \
curr_align_i.first, curr_align_i.second, \
nbr_align_i.first, nbr_align_i.second, \
int(curr_align_i_distance), int(nbr_align_i_distance) );
#endif
dst_alignment[ tile_row_i ][ tile_col_i ] = nbr_align_i;
curr_align_i_distance = nbr_align_i_distance;
}
}
}
}
}
}
// Border part of the loop
// TOP
// {
// int tile_row_i = 0;
// for ( int tile_col_i = 1; tile_col_i < num_tiles_w - 1; ++tile_col_i )
// {
// }
// }
// TOP LEFT corner
// RIGHT
// TOP RIGHT corner
// LEFT
// BOTTOM LEFT corner
// BOTTOM
// BOTTOM RIGHT CORNER
} // end of build_alignment_consider_neighbour
}
}
// Set tilesize as template argument for better compiler optimization result.
@ -507,16 +482,41 @@ void align_image_level( \
}
// Every level share the same upsample function
void (*upsample_alignment_func_ptr)(std::vector<std::vector<std::pair<int, int>>>&, std::vector<std::vector<std::pair<int, int>>>&, int, int) = nullptr;
void (*upsample_alignment_func_ptr)(const std::vector<std::vector<std::pair<int, int>>>&, \
std::vector<std::vector<std::pair<int, int>>>&, \
int, int, const cv::Mat&, const cv::Mat&, bool) = nullptr;
if ( scale_factor_prev_curr == 2 )
{
if ( curr_tile_size / prev_tile_size == 2 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 2>;
if ( curr_tile_size == 8 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 2, 8>;
}
else if ( curr_tile_size == 16 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 2, 16>;
}
else
{
throw std::runtime_error("Something wrong with upsampling function setting\n");
}
}
else if ( curr_tile_size / prev_tile_size == 1 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 1>;
if ( curr_tile_size == 8 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 1, 8>;
}
else if ( curr_tile_size == 16 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<2, 1, 16>;
}
else
{
throw std::runtime_error("Something wrong with upsampling function setting\n");
}
}
else
{
@ -527,11 +527,34 @@ void align_image_level( \
{
if ( curr_tile_size / prev_tile_size == 2 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 2>;
if ( curr_tile_size == 8 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 2, 8>;
}
else if ( curr_tile_size == 16 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 2, 16>;
}
else
{
throw std::runtime_error("Something wrong with upsampling function setting\n");
}
}
else if ( curr_tile_size / prev_tile_size == 1 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 1>;
if ( curr_tile_size == 8 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 1, 8>;
}
else if ( curr_tile_size == 16 )
{
upsample_alignment_func_ptr = &build_upsampled_prev_aligement<4, 1, 16>;
}
else
{
throw std::runtime_error("Something wrong with upsampling function setting\n");
}
}
else
{
@ -539,6 +562,7 @@ void align_image_level( \
}
}
// Function to extract reference image tile for memory cache
cv::Mat (*extract_ref_img_tile)(const cv::Mat&, int, int) = nullptr;
if ( curr_tile_size == 8 )
@ -591,14 +615,13 @@ void align_image_level( \
// Upsample previous level alignment
else
{
std::vector<std::vector<std::pair<int, int>>> upsampled_prev_aligement_tmp;
upsample_alignment_func_ptr( prev_aligement, upsampled_prev_aligement_tmp, num_tiles_h, num_tiles_w );
alignment_nbr_func_ptr( upsampled_prev_aligement_tmp, upsampled_prev_aligement, ref_img, alt_img );
upsample_alignment_func_ptr( prev_aligement, upsampled_prev_aligement, \
num_tiles_h, num_tiles_w, ref_img, alt_img, false );
printf("\n!!!!!Upsampled previous alignment\n");
for ( int tile_row = 0; tile_row < upsampled_prev_aligement.size(); tile_row++ )
for ( int tile_row = 0; tile_row < int(upsampled_prev_aligement.size()); tile_row++ )
{
for ( int tile_col = 0; tile_col < upsampled_prev_aligement.at(0).size(); tile_col++ )
for ( int tile_col = 0; tile_col < int(upsampled_prev_aligement.at(0).size()); tile_col++ )
{
const auto tile_start = upsampled_prev_aligement.at( tile_row ).at( tile_col );
printf("up tile (%d, %d) -> start idx (%d, %d)\n", \
@ -729,25 +752,25 @@ void align_image_level( \
}
// If same value, choose the one closer to the original tile location
if ( distance_j == min_distance_i && min_distance_row_i != -1 && min_distance_col_i != -1 )
{
int prev_distance_row_2_ref = min_distance_row_i - search_radiou;
int prev_distance_col_2_ref = min_distance_col_i - search_radiou;
int curr_distance_row_2_ref = search_row_j - search_radiou;
int curr_distance_col_2_ref = search_col_j - search_radiou;
int prev_distance_2_ref_sqr = prev_distance_row_2_ref * prev_distance_row_2_ref + prev_distance_col_2_ref * prev_distance_col_2_ref;
int curr_distance_2_ref_sqr = curr_distance_row_2_ref * curr_distance_row_2_ref + curr_distance_col_2_ref * curr_distance_col_2_ref;
// previous min distance idx is farther away from ref tile start location
if ( prev_distance_2_ref_sqr > curr_distance_2_ref_sqr )
{
// printf("@@@ Same distance %d, choose closer one (%d, %d) instead of (%d, %d)\n", \
// distance_j, search_row_j, search_col_j, min_distance_row_i, min_distance_col_i);
min_distance_col_i = search_col_j;
min_distance_row_i = search_row_j;
}
}
// if ( distance_j == min_distance_i && min_distance_row_i != -1 && min_distance_col_i != -1 )
// {
// int prev_distance_row_2_ref = min_distance_row_i - search_radiou;
// int prev_distance_col_2_ref = min_distance_col_i - search_radiou;
// int curr_distance_row_2_ref = search_row_j - search_radiou;
// int curr_distance_col_2_ref = search_col_j - search_radiou;
// int prev_distance_2_ref_sqr = prev_distance_row_2_ref * prev_distance_row_2_ref + prev_distance_col_2_ref * prev_distance_col_2_ref;
// int curr_distance_2_ref_sqr = curr_distance_row_2_ref * curr_distance_row_2_ref + curr_distance_col_2_ref * curr_distance_col_2_ref;
// // previous min distance idx is farther away from ref tile start location
// if ( prev_distance_2_ref_sqr > curr_distance_2_ref_sqr )
// {
// // printf("@@@ Same distance %d, choose closer one (%d, %d) instead of (%d, %d)\n", \
// // distance_j, search_row_j, search_col_j, min_distance_row_i, min_distance_col_i);
// min_distance_col_i = search_col_j;
// min_distance_row_i = search_row_j;
// }
// }
}
}
@ -765,26 +788,26 @@ void align_image_level( \
}
}
// printf("\n!!!!!Min distance for each tile \n");
// for ( int tile_row = 0; tile_row < num_tiles_h; tile_row++ )
// {
// for ( int tile_col = 0; tile_col < num_tiles_w; ++tile_col )
// {
// printf("tile (%d, %d) distance %u\n", \
// tile_row, tile_col, distances.at( tile_row).at(tile_col ) );
// }
// }
printf("\n!!!!!Min distance for each tile \n");
for ( int tile_row = 0; tile_row < num_tiles_h; tile_row++ )
{
for ( int tile_col = 0; tile_col < num_tiles_w; ++tile_col )
{
printf("tile (%d, %d) distance %u\n", \
tile_row, tile_col, distances.at( tile_row).at(tile_col ) );
}
}
// printf("\n!!!!!Alignment at current level\n");
// for ( int tile_row = 0; tile_row < num_tiles_h; tile_row++ )
// {
// for ( int tile_col = 0; tile_col < num_tiles_w; tile_col++ )
// {
// const auto tile_start = curr_alignment.at( tile_row ).at( tile_col );
// printf("tile (%d, %d) -> start idx (%d, %d)\n", \
// tile_row, tile_col, tile_start.first, tile_start.second);
// }
// }
printf("\n!!!!!Alignment at current level\n");
for ( int tile_row = 0; tile_row < num_tiles_h; tile_row++ )
{
for ( int tile_col = 0; tile_col < num_tiles_w; tile_col++ )
{
const auto tile_start = curr_alignment.at( tile_row ).at( tile_col );
printf("tile (%d, %d) -> start idx (%d, %d)\n", \
tile_row, tile_col, tile_start.first, tile_start.second);
}
}
}

Loading…
Cancel
Save