Added code in progress for temporal and spatial denoising

I added some of my code for temporal and spatial denoising, but I commented it out since it still is incomplete since I need to find a way to allow for multiple image channels. I created a helper function which we could use to return the channels. I also edited the merge.h file to include the signature of the helper function.
main
cvachha 3 years ago committed by Haohua-Lyu
parent 135449d772
commit f8ea17b1d2

@ -105,6 +105,9 @@ class merge
cv::Mat channel_image, \
float lambda_shot, \
float lambda_read);
std::vector<ushort> getChannels(cv::Mat input_image);
};
} // namespace hdrplus

@ -16,6 +16,7 @@ void merge::process( hdrplus::burst& burst_images, \
std::tie(lambda_shot, lambda_read) = burst_images.bayer_images[burst_images.reference_image_idx].get_noise_params();
// 4.2-4.4 Denoising and Merging
// Get padded bayer image
cv::Mat reference_image = burst_images.bayer_images_pad[burst_images.reference_image_idx];
// cv::imwrite("ref.jpg", reference_image);
@ -28,13 +29,16 @@ void merge::process( hdrplus::burst& burst_images, \
if (y % 2 == 0) {
if (x % 2 == 0) {
channels[0].push_back(reference_image.at<ushort>(y, x));
} else {
}
else {
channels[1].push_back(reference_image.at<ushort>(y, x));
}
} else {
}
else {
if (x % 2 == 0) {
channels[2].push_back(reference_image.at<ushort>(y, x));
} else {
}
else {
channels[3].push_back(reference_image.at<ushort>(y, x));
}
}
@ -48,6 +52,10 @@ void merge::process( hdrplus::burst& burst_images, \
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
// Apply merging on the channel
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i, lambda_shot, lambda_read);
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
@ -63,13 +71,16 @@ void merge::process( hdrplus::burst& burst_images, \
if (y % 2 == 0) {
if (x % 2 == 0) {
merged_raw.push_back(channels[0][(y / 2) * (reference_image.cols / 2) + (x / 2)]);
} else {
}
else {
merged_raw.push_back(channels[1][(y / 2) * (reference_image.cols / 2) + (x / 2)]);
}
} else {
}
else {
if (x % 2 == 0) {
merged_raw.push_back(channels[2][(y / 2) * (reference_image.cols / 2) + (x / 2)]);
} else {
}
else {
merged_raw.push_back(channels[3][(y / 2) * (reference_image.cols / 2) + (x / 2)]);
}
}
@ -173,6 +184,56 @@ cv::Mat merge::processChannel( hdrplus::burst& burst_images, \
// TODO: 4.2 Temporal Denoising
//goal: temporially denoise using the weiner filter
//input:
//1. array of 2D dft tiles of the reference image
//2. array of 2D dft tiles ocf the aligned alternate image
//3. estimated noise varaince
//4. temporal factor
//return: merged image patches dft
/*
//tile_size = TILE_SIZE;
double temporal_factor = 8 //8 by default
double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
//start calculating the merged image tiles fft
for (int i = 0;i < burst_images.num_images; i++) {
if (i != burst_images.reference_image_idx) {
}
}
//sample of 0th image
altername_image = burst_images.bayer_images_pad[0]
//get the tiles of the alternate image
std::vector<cv::Mat> alternate_image_tiles = getReferenceTiles(channel_image);
//get the dft of the alternate image
std::vector<cv::Mat> alternate_tiles_DFT;
for (auto alt_tile : alternate_tiles_DFT) {
cv::Mat alt_tile_DFT;
alt_tile.convertTo(alt_tile_DFT, CV_32F);
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
alternate_tiles_DFT.push_back(alt_tile_DFT);
}
std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT;
std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT + A * tile_differences;
//use merged_image_tiles_fft into part 4.3
// TODO: 4.3 Spatial Denoising
// Apply IFFT on reference tiles (frequency to spatial)
@ -185,6 +246,21 @@ cv::Mat merge::processChannel( hdrplus::burst& burst_images, \
}
reference_tiles = denoised_tiles;
//adding after here
double spatial_factor = 1; //to be added
double spatial_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*spatial_factor;
//calculate the spatial denoising
spatial_tile_dist = reference_tiles.real**2 + reference_tiles.imag**2;
std::vector<cv::Mat> WienerCoeff = denoised_tiles*spatial_noise_scaling*noise_variance;
merged_channel_tiles_spatial = reference_tiles*spatial_tile_dist/(spatial_tile_dist+WienerCoeff)
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
*/
// 4.4 Cosine Window Merging
// Process tiles through 2D cosine window
std::vector<cv::Mat> windowed_tiles;
@ -196,4 +272,35 @@ cv::Mat merge::processChannel( hdrplus::burst& burst_images, \
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
}
//Helper function to get the channels from the input image
std::vector<ushort> getChannels(cv::Mat input_image){
std::vector<ushort> channels[4];
for (int y = 0; y < input_image.rows; ++y) {
for (int x = 0; x < input_image.cols; ++x) {
if (y % 2 == 0) {
if (x % 2 == 0) {
channels[0].push_back(input_image.at<ushort>(y, x));
}
else {
channels[1].push_back(input_image.at<ushort>(y, x));
}
}
else {
if (x % 2 == 0) {
channels[2].push_back(input_image.at<ushort>(y, x));
}
else {
channels[3].push_back(input_image.at<ushort>(y, x));
}
}
}
}
return channels;
}
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
} // namespace hdrplus
Loading…
Cancel
Save