You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
17 KiB
C++
393 lines
17 KiB
C++
#include <opencv2/opencv.hpp> // all opencv header
|
|
#include <vector>
|
|
#include <utility>
|
|
#include "hdrplus/merge.h"
|
|
#include "hdrplus/burst.h"
|
|
#include "hdrplus/utility.h"
|
|
|
|
namespace hdrplus
|
|
{
|
|
|
|
void merge::process(hdrplus::burst& burst_images, \
|
|
std::vector<std::vector<std::vector<std::pair<int, int>>>>& alignments)
|
|
{
|
|
// 4.1 Noise Parameters and RMS
|
|
// Noise parameters calculated from baseline ISO noise parameters
|
|
double lambda_shot, lambda_read;
|
|
std::tie(lambda_shot, lambda_read) = burst_images.bayer_images[burst_images.reference_image_idx].get_noise_params();
|
|
|
|
// 4.2-4.4 Denoising and Merging
|
|
|
|
// Get padded bayer image
|
|
cv::Mat reference_image = burst_images.bayer_images_pad[burst_images.reference_image_idx];
|
|
cv::imwrite("ref.jpg", reference_image);
|
|
|
|
// Get raw channels
|
|
std::vector<cv::Mat> channels(4);
|
|
hdrplus::extract_rgb_fmom_bayer<uint16_t>(reference_image, channels[0], channels[1], channels[2], channels[3]);
|
|
|
|
std::vector<cv::Mat> processed_channels(4);
|
|
// For each channel, perform denoising and merge
|
|
for (int i = 0; i < 4; ++i) {
|
|
// Get channel mat
|
|
cv::Mat channel_i = channels[i];
|
|
cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
|
|
|
|
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
|
|
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
|
|
|
|
//create list of channel_i of alternate images:
|
|
std::vector<cv::Mat> alternate_channel_i_list;
|
|
for (int j = 0; j < burst_images.num_images; j++) {
|
|
if (j != burst_images.reference_image_idx) {
|
|
|
|
//get alternate image
|
|
cv::Mat alt_image = burst_images.bayer_images_pad[j];
|
|
std::vector<cv::Mat> alt_channels(4);
|
|
hdrplus::extract_rgb_fmom_bayer<uint16_t>(alt_image, alt_channels[0], alt_channels[1], alt_channels[2], alt_channels[3]);
|
|
|
|
alternate_channel_i_list.push_back(alt_channels[i]);
|
|
}
|
|
}
|
|
|
|
// Apply merging on the channel
|
|
cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i, alternate_channel_i_list, lambda_shot, lambda_read);
|
|
cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
|
|
|
|
// Put channel raw data back to channels
|
|
merged_channel.convertTo(processed_channels[i], CV_16U);
|
|
}
|
|
|
|
// Write all channels back to a bayer mat
|
|
cv::Mat merged(reference_image.rows, reference_image.cols, CV_16U);
|
|
int x, y;
|
|
for (y = 0; y < reference_image.rows; ++y){
|
|
uint16_t* row = merged.ptr<uint16_t>(y);
|
|
if (y % 2 == 0){
|
|
uint16_t* i0 = processed_channels[0].ptr<uint16_t>(y / 2);
|
|
uint16_t* i1 = processed_channels[1].ptr<uint16_t>(y / 2);
|
|
|
|
for (x = 0; x < reference_image.cols;){
|
|
//R
|
|
row[x] = i0[x / 2];
|
|
x++;
|
|
|
|
//G1
|
|
row[x] = i1[x / 2];
|
|
x++;
|
|
}
|
|
}
|
|
else {
|
|
uint16_t* i2 = processed_channels[2].ptr<uint16_t>(y / 2);
|
|
uint16_t* i3 = processed_channels[3].ptr<uint16_t>(y / 2);
|
|
|
|
for(x = 0; x < reference_image.cols;){
|
|
//G2
|
|
row[x] = i2[x / 2];
|
|
x++;
|
|
|
|
//B
|
|
row[x] = i3[x / 2];
|
|
x++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove padding
|
|
std::vector<int> padding = burst_images.padding_info_bayer;
|
|
cv::Range horizontal = cv::Range(padding[2], reference_image.cols - padding[3]);
|
|
cv::Range vertical = cv::Range(padding[0], reference_image.rows - padding[1]);
|
|
burst_images.merged_bayer_image = merged(vertical, horizontal);
|
|
cv::imwrite("merged.jpg", burst_images.merged_bayer_image);
|
|
}
|
|
|
|
std::vector<cv::Mat> merge::getReferenceTiles(cv::Mat reference_image) {
|
|
std::vector<cv::Mat> reference_tiles;
|
|
for (int y = 0; y < reference_image.rows - offset; y += offset) {
|
|
for (int x = 0; x < reference_image.cols - offset; x += offset) {
|
|
cv::Mat tile = reference_image(cv::Rect(x, y, TILE_SIZE, TILE_SIZE));
|
|
reference_tiles.push_back(tile);
|
|
}
|
|
}
|
|
return reference_tiles;
|
|
}
|
|
|
|
cv::Mat merge::mergeTiles(std::vector<cv::Mat> tiles, int num_rows, int num_cols) {
|
|
// 1. get all four subsets: original (evenly split), horizontal overlapped,
|
|
// vertical overlapped, 2D overlapped
|
|
std::vector<std::vector<cv::Mat>> tiles_original;
|
|
for (int y = 0; y < num_rows / offset - 1; y += 2) {
|
|
std::vector<cv::Mat> row;
|
|
for (int x = 0; x < num_cols / offset - 1; x += 2) {
|
|
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
|
|
}
|
|
tiles_original.push_back(row);
|
|
}
|
|
|
|
std::vector<std::vector<cv::Mat>> tiles_horizontal;
|
|
for (int y = 0; y < num_rows / offset - 1; y += 2) {
|
|
std::vector<cv::Mat> row;
|
|
for (int x = 1; x < num_cols / offset - 1; x += 2) {
|
|
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
|
|
}
|
|
tiles_horizontal.push_back(row);
|
|
}
|
|
|
|
std::vector<std::vector<cv::Mat>> tiles_vertical;
|
|
for (int y = 1; y < num_rows / offset - 1; y += 2) {
|
|
std::vector<cv::Mat> row;
|
|
for (int x = 0; x < num_cols / offset - 1; x += 2) {
|
|
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
|
|
}
|
|
tiles_vertical.push_back(row);
|
|
}
|
|
|
|
std::vector<std::vector<cv::Mat>> tiles_2d;
|
|
for (int y = 1; y < num_rows / offset - 1; y += 2) {
|
|
std::vector<cv::Mat> row;
|
|
for (int x = 1; x < num_cols / offset - 1; x += 2) {
|
|
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
|
|
}
|
|
tiles_2d.push_back(row);
|
|
}
|
|
|
|
// 2. Concatenate the four subsets
|
|
cv::Mat img_original = cat2Dtiles(tiles_original);
|
|
cv::Mat img_horizontal = cat2Dtiles(tiles_horizontal);
|
|
cv::Mat img_vertical = cat2Dtiles(tiles_vertical);
|
|
cv::Mat img_2d = cat2Dtiles(tiles_2d);
|
|
|
|
// 3. Add the four subsets together
|
|
img_original(cv::Rect(offset, 0, num_cols - TILE_SIZE, num_rows)) += img_horizontal;
|
|
img_original(cv::Rect(0, offset, num_cols, num_rows - TILE_SIZE)) += img_vertical;
|
|
img_original(cv::Rect(offset, offset, num_cols - TILE_SIZE, num_rows - TILE_SIZE)) += img_2d;
|
|
|
|
return img_original;
|
|
}
|
|
|
|
cv::Mat merge::processChannel(hdrplus::burst& burst_images, \
|
|
std::vector<std::vector<std::vector<std::pair<int, int>>>>& alignments, \
|
|
cv::Mat channel_image, \
|
|
std::vector<cv::Mat> alternate_channel_i_list,\
|
|
float lambda_shot, \
|
|
float lambda_read) {
|
|
// Get tiles of the reference image
|
|
std::vector<cv::Mat> reference_tiles = getReferenceTiles(channel_image);
|
|
|
|
// Get noise variance (sigma**2 = lambda_shot * tileRMS + lambda_read)
|
|
std::vector<float> noise_variance = getNoiseVariance(reference_tiles, lambda_shot, lambda_read);
|
|
|
|
// Apply FFT on reference tiles (spatial to frequency)
|
|
std::vector<cv::Mat> reference_tiles_DFT;
|
|
for (auto ref_tile : reference_tiles) {
|
|
cv::Mat ref_tile_DFT;
|
|
ref_tile.convertTo(ref_tile_DFT, CV_32F);
|
|
cv::dft(ref_tile_DFT, ref_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
|
|
reference_tiles_DFT.push_back(ref_tile_DFT);
|
|
}
|
|
|
|
// TODO: 4.2 Temporal Denoising
|
|
//std::vector<cv::Mat> temporal_denoised_tiles = temporal_denoise(reference_tiles, reference_tiles_DFT, noise_varaince)
|
|
|
|
|
|
// TODO: 4.3 Spatial Denoising
|
|
|
|
////adding after here
|
|
|
|
std::vector<cv::Mat> spatial_denoised_tiles = spatial_denoise(reference_tiles_DFT, alternate_channel_i_list.size(), noise_variance, 0.1);
|
|
//apply the cosineWindow2D over the merged_channel_tiles_spatial and reconstruct the image
|
|
// reference_tiles = spatial_denoised_tiles; //now reference tiles are temporally and spatially denoised
|
|
////
|
|
reference_tiles_DFT = spatial_denoised_tiles;
|
|
// Apply IFFT on reference tiles (frequency to spatial)
|
|
std::vector<cv::Mat> denoised_tiles;
|
|
for (auto dft_tile : reference_tiles_DFT) {
|
|
cv::Mat denoised_tile;
|
|
cv::dft(dft_tile, denoised_tile, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT);
|
|
denoised_tile.convertTo(denoised_tile, CV_16U);
|
|
denoised_tiles.push_back(denoised_tile);
|
|
}
|
|
reference_tiles = denoised_tiles;
|
|
|
|
// 4.4 Cosine Window Merging
|
|
// Process tiles through 2D cosine window
|
|
std::vector<cv::Mat> windowed_tiles;
|
|
for (auto tile : reference_tiles) {
|
|
windowed_tiles.push_back(cosineWindow2D(tile));
|
|
}
|
|
|
|
// Merge tiles
|
|
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
|
|
}
|
|
|
|
std::vector<cv::Mat> temporal_denoise(std::vector<cv::Mat> tiles, std::vector<cv::Mat> alt_imgs, std::vector<float> noise_variance, float temporal_factor) {
|
|
//goal: temporially denoise using the weiner filter
|
|
//input:
|
|
//1. array of 2D dft tiles of the reference image
|
|
//2. array of 2D dft tiles ocf the aligned alternate image
|
|
//3. estimated noise varaince
|
|
//4. temporal factor
|
|
//return: merged image patches dft
|
|
|
|
|
|
|
|
//tile_size = TILE_SIZE;
|
|
|
|
|
|
|
|
//start calculating the merged image tiles fft
|
|
|
|
|
|
//get the tiles of the alternate image as a list
|
|
|
|
std::vector<std::vector<cv::Mat>> alternate_channel_i_tile_list; //list of alt channel tiles
|
|
std::vector<std::vector<cv::Mat>> alternate_tiles_DFT_list; //list of alt channel tiles
|
|
|
|
for (auto alt_img_channel : alternate_channel_i_list) {
|
|
std::vector<uint16_t> alt_img_channel_tile = getReferenceTiles(alt_img_channel); //get tiles from alt image
|
|
alternate_channel_i_tile_list.push_back(alt_img_channel_tile)
|
|
|
|
std::vector<cv::Mat> alternate_tiles_DFT;
|
|
for (auto alt_tile : alt_img_channel_tile) {
|
|
cv::Mat alt_tile_DFT;
|
|
alt_tile.convertTo(alt_tile_DFT, CV_32F);
|
|
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_SCALE | cv::DFT_COMPLEX_OUTPUT);
|
|
alternate_tiles_DFT.push_back(alt_tile_DFT);
|
|
}
|
|
alternate_tiles_DFT_list.push_back(alternate_tiles_DFT);
|
|
}
|
|
|
|
//get the dft of the alternate image
|
|
//std::vector<cv::Mat> alternate_tiles_DFT;
|
|
|
|
|
|
|
|
|
|
//std::vector<cv::Mat> tile_differences = reference_tiles_DFT - alternate_tiles_DFT_list;
|
|
|
|
//find reference_tiles_DFT - alternate_tiles_DFT_list
|
|
// std::vector<std::vector<cv::Mat>> tile_difference_list; //list of tile differences
|
|
// for (auto individual_alternate_tile_DFT : alternate_tiles_DFT_list) {
|
|
// std::vector<cv::Mat> single_tile_difference = reference_tiles_DFT - individual_alternate_tile_DFT;
|
|
// tile_difference_list.push_back(single_tile_difference);
|
|
// }
|
|
|
|
// //find the squared absolute difference across all the tiles
|
|
// std::vector<cv::Mat> tile_sq_asolute_diff = tile_differences; //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
// std::vector<cv::Mat> copy_diff = tile_differences.clone(); //squared absolute difference is tile_differences.real**2 + tile_differnce.imag**2; //also tile_dist
|
|
|
|
//get the real and imaginary components (real**2 + imag**2)
|
|
|
|
// std::vector<cv::Mat> absolute_distance_list;
|
|
// for (auto individual_difference : tile_difference_list) {
|
|
// cv::Mat copy_diff = individual_difference.clone();
|
|
// for (int i = 0 ; i < individual_difference.rows; i++ ) {
|
|
// //std::complex<double>* row_ptr = tile_sq_asolute_diff.ptr<std::complex<double>>(i);
|
|
// for (int j = 0; j < individual_difference.cols*individual_difference.channels(); j++) {
|
|
// std::complex<double> single_complex_num = individual_difference.at<std::complex<double>>(i,j);
|
|
// copy_diff.at<std::complex<double>>(i,j) = math.pow(single_complex_num.real(),2)+math.pow(single_complex_num.imag(),2); //.real and .imag
|
|
// }
|
|
// }
|
|
|
|
// //std::vector<cv::Mat> single_tile_difference = individual_difference.at<std::complex<double>>(0,0).real(); //.real and .imag
|
|
// absolute_distance_list.push_back(copy_diff);
|
|
// }
|
|
|
|
|
|
|
|
//get shrinkage operator
|
|
//std::vector<cv::Mat> A = tile_sq_asolute_diff/(tile_sq_asolute_diff+noise_variance)
|
|
//std::vector<cv::Mat> A;
|
|
|
|
//get tile_sq_asolute_diff+noise_variance
|
|
// std::vector<cv::Mat> A_denominator;
|
|
// for (int i = 0; i < absolute_distance_list.size();i++){
|
|
// cv::Mat noise_var_mat( noise_variance[i],absolute_distance_list[i].rows,absolute_distance_list[i].cols,CV_16U);
|
|
// cv::Mat single_denominator = absolute_distance_list[i] + noise_var_mat;
|
|
// A_denominator.push_back(single_denominator);
|
|
// }
|
|
|
|
// for (auto individual_distance : absolute_distance_list) {
|
|
// cv::Mat single_A =
|
|
// }
|
|
|
|
//std::vector<cv::Mat> merged_image_tiles_fft = alternate_tiles_DFT_list + A * tile_differences;
|
|
|
|
|
|
|
|
//calculate noise scaling
|
|
double temporal_factor = 8.0 //8 by default
|
|
|
|
double temporal_noise_scaling = (pow(TILE_SIZE,2) * (1.0/16*2))*temporal_factor;
|
|
|
|
//loop across tiles
|
|
|
|
// Calculate absolute difference
|
|
|
|
for (int i = 0; i < tiles.size(); ++i) {
|
|
cv::Mat tile = tiles[i];
|
|
//float coeff = noise_variance[i] / num_alts * spatial_noise_scaling;
|
|
|
|
// Calculate absolute difference
|
|
cv::Mat complexMats[2];
|
|
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
|
|
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
|
|
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
|
|
|
|
//find shrinkage operator A
|
|
|
|
//create a mat of only the noise variance
|
|
cv::Mat noise_var_mat(noise_variance[i]*temporal_noise_scaling,absolute_diff.rows,absolute_diff.cols,CV_16U);
|
|
cv::Mat A_denom = absolute_diff+noise_var_mat;
|
|
cv::Mat A = cv::divide(absolute_diff,A_denom);
|
|
|
|
//update reference DFT
|
|
reference_tiles_DFT += alternate_tiles_DFT_list + cv::mul(A,absolute_diff);
|
|
|
|
}
|
|
|
|
//get average
|
|
reference_tiles_DFT = cv::divide(reference_tiles_DFT,tiles.size())
|
|
|
|
return reference_tiles_DFT
|
|
|
|
}
|
|
|
|
std::vector<cv::Mat> merge::spatial_denoise(std::vector<cv::Mat> tiles, int num_alts, std::vector<float> noise_variance, float spatial_factor) {
|
|
|
|
double spatial_noise_scaling = ((1.0 / 16)) * spatial_factor;
|
|
|
|
// Calculate |w| using ifftshift
|
|
cv::Mat row_distances = cv::Mat::zeros(1, TILE_SIZE, CV_32F);
|
|
for(int i = 0; i < TILE_SIZE; ++i) {
|
|
row_distances.at<float>(i) = i - offset;
|
|
}
|
|
row_distances = cv::repeat(row_distances.t(), 1, TILE_SIZE);
|
|
cv::Mat col_distances = row_distances.t();
|
|
cv::Mat distances;
|
|
cv::sqrt(row_distances.mul(row_distances) + col_distances.mul(col_distances), distances);
|
|
ifftshift(distances);
|
|
|
|
std::vector<cv::Mat> denoised;
|
|
// Loop through all tiles
|
|
for (int i = 0; i < tiles.size(); ++i) {
|
|
cv::Mat tile = tiles[i];
|
|
float coeff = noise_variance[i] / (num_alts + 1) * spatial_noise_scaling;
|
|
|
|
// Calculate absolute difference
|
|
cv::Mat complexMats[2];
|
|
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
|
|
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
|
|
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
|
|
|
|
// Division
|
|
cv::Mat scale;
|
|
cv::divide(absolute_diff, absolute_diff + distances * coeff, scale);
|
|
cv::merge(std::vector<cv::Mat>{scale, scale}, scale);
|
|
denoised.push_back(tile.mul(scale));
|
|
}
|
|
return denoised;
|
|
}
|
|
|
|
|
|
} // namespace hdrplus
|