You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
TermApp/app/src/main/cpp/hdrplus/src/merge.cpp

338 lines
14 KiB
C++

#include <opencv2/opencv.hpp> // all opencv header
#include <vector>
#include <utility>
#include "hdrplus/merge.h"
#include "hdrplus/burst.h"
#include "hdrplus/utility.h"
namespace hdrplus
{
void merge::process(hdrplus::burst& burst_images, \
std::vector<std::vector<std::vector<std::pair<int, int>>>>& alignments)
{
// 4.1 Noise Parameters and RMS
// Noise parameters calculated from baseline ISO noise parameters
double lambda_shot, lambda_read;
std::tie(lambda_shot, lambda_read) = burst_images.bayer_images[burst_images.reference_image_idx].get_noise_params();
// 4.2-4.4 Denoising and Merging
// Get padded bayer image
cv::Mat reference_image = burst_images.bayer_images_pad[burst_images.reference_image_idx];
cv::imwrite("ref.jpg", reference_image);
// Get raw channels
std::vector<cv::Mat> channels(4);
hdrplus::extract_rgb_from_bayer<uint16_t>(reference_image, channels[0], channels[1], channels[2], channels[3]);
std::vector<cv::Mat> processed_channels(4);
// For each channel, perform denoising and merge
for (int i = 0; i < 4; ++i) {
// Get channel mat
cv::Mat channel_i = channels[i];
// cv::imwrite("ref" + std::to_string(i) + ".jpg", channel_i);
//we should be getting the individual channel in the same place where we call the processChannel function with the reference channel in its arguments
//possibly we could add another argument in the processChannel function which is the channel_i for the alternate image. maybe using a loop to cover all the other images
//create list of channel_i of alternate images:
std::vector<cv::Mat> alternate_channel_i_list;
for (int j = 0; j < burst_images.num_images; j++) {
if (j != burst_images.reference_image_idx) {
//get alternate image
cv::Mat alt_image = burst_images.bayer_images_pad[j];
std::vector<cv::Mat> alt_channels(4);
hdrplus::extract_rgb_from_bayer<uint16_t>(alt_image, alt_channels[0], alt_channels[1], alt_channels[2], alt_channels[3]);
alternate_channel_i_list.push_back(alt_channels[i]);
}
}
// Apply merging on the channel
cv::Mat merged_channel = processChannel(burst_images, alignments, channel_i, alternate_channel_i_list, lambda_shot, lambda_read);
// cv::imwrite("merged" + std::to_string(i) + ".jpg", merged_channel);
// Put channel raw data back to channels
merged_channel.convertTo(processed_channels[i], CV_16U);
}
// Write all channels back to a bayer mat
cv::Mat merged(reference_image.rows, reference_image.cols, CV_16U);
int x, y;
for (y = 0; y < reference_image.rows; ++y){
uint16_t* row = merged.ptr<uint16_t>(y);
if (y % 2 == 0){
uint16_t* i0 = processed_channels[0].ptr<uint16_t>(y / 2);
uint16_t* i1 = processed_channels[1].ptr<uint16_t>(y / 2);
for (x = 0; x < reference_image.cols;){
//R
row[x] = i0[x / 2];
x++;
//G1
row[x] = i1[x / 2];
x++;
}
}
else {
uint16_t* i2 = processed_channels[2].ptr<uint16_t>(y / 2);
uint16_t* i3 = processed_channels[3].ptr<uint16_t>(y / 2);
for(x = 0; x < reference_image.cols;){
//G2
row[x] = i2[x / 2];
x++;
//B
row[x] = i3[x / 2];
x++;
}
}
}
// Remove padding
std::vector<int> padding = burst_images.padding_info_bayer;
cv::Range horizontal = cv::Range(padding[2], reference_image.cols - padding[3]);
cv::Range vertical = cv::Range(padding[0], reference_image.rows - padding[1]);
burst_images.merged_bayer_image = merged(vertical, horizontal);
cv::imwrite("merged.jpg", burst_images.merged_bayer_image);
}
std::vector<cv::Mat> merge::getReferenceTiles(cv::Mat reference_image) {
std::vector<cv::Mat> reference_tiles;
for (int y = 0; y < reference_image.rows - offset; y += offset) {
for (int x = 0; x < reference_image.cols - offset; x += offset) {
cv::Mat tile = reference_image(cv::Rect(x, y, TILE_SIZE, TILE_SIZE));
reference_tiles.push_back(tile);
}
}
return reference_tiles;
}
cv::Mat merge::mergeTiles(std::vector<cv::Mat> tiles, int num_rows, int num_cols) {
// 1. get all four subsets: original (evenly split), horizontal overlapped,
// vertical overlapped, 2D overlapped
std::vector<std::vector<cv::Mat>> tiles_original;
std::vector<cv::Mat> row;
for (int y = 0; y < num_rows / offset - 1; y += 2) {
row.clear();
for (int x = 0; x < num_cols / offset - 1; x += 2) {
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
}
tiles_original.push_back(row);
}
std::vector<std::vector<cv::Mat>> tiles_horizontal;
// std::vector<cv::Mat> row;
for (int y = 0; y < num_rows / offset - 1; y += 2) {
row.clear();
for (int x = 1; x < num_cols / offset - 1; x += 2) {
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
}
tiles_horizontal.push_back(row);
}
std::vector<std::vector<cv::Mat>> tiles_vertical;
// std::vector<cv::Mat> row;
for (int y = 1; y < num_rows / offset - 1; y += 2) {
row.clear();
for (int x = 0; x < num_cols / offset - 1; x += 2) {
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
}
tiles_vertical.push_back(row);
}
std::vector<std::vector<cv::Mat>> tiles_2d;
// std::vector<cv::Mat> row;
for (int y = 1; y < num_rows / offset - 1; y += 2) {
row.clear();
for (int x = 1; x < num_cols / offset - 1; x += 2) {
row.push_back(tiles[y * (num_cols / offset - 1) + x]);
}
tiles_2d.push_back(row);
}
// 2. Concatenate the four subsets
cv::Mat img_original = cat2Dtiles(tiles_original);
cv::Mat img_horizontal = cat2Dtiles(tiles_horizontal);
cv::Mat img_vertical = cat2Dtiles(tiles_vertical);
cv::Mat img_2d = cat2Dtiles(tiles_2d);
// 3. Add the four subsets together
img_original(cv::Rect(offset, 0, num_cols - TILE_SIZE, num_rows)) += img_horizontal;
img_original(cv::Rect(0, offset, num_cols, num_rows - TILE_SIZE)) += img_vertical;
img_original(cv::Rect(offset, offset, num_cols - TILE_SIZE, num_rows - TILE_SIZE)) += img_2d;
return img_original;
}
cv::Mat merge::processChannel(hdrplus::burst& burst_images, \
std::vector<std::vector<std::vector<std::pair<int, int>>>>& alignments, \
cv::Mat channel_image, \
std::vector<cv::Mat> alternate_channel_i_list,\
float lambda_shot, \
float lambda_read) {
// Get tiles of the reference image
std::vector<cv::Mat> reference_tiles = getReferenceTiles(channel_image);
// Get noise variance (sigma**2 = lambda_shot * tileRMS + lambda_read)
std::vector<float> noise_variance = getNoiseVariance(reference_tiles, lambda_shot, lambda_read);
// Apply FFT on reference tiles (spatial to frequency)
std::vector<cv::Mat> reference_tiles_DFT;
for (auto ref_tile : reference_tiles) {
cv::Mat ref_tile_DFT;
ref_tile.convertTo(ref_tile_DFT, CV_32F);
cv::dft(ref_tile_DFT, ref_tile_DFT, cv::DFT_COMPLEX_OUTPUT);
reference_tiles_DFT.push_back(ref_tile_DFT);
}
// Acquire alternate tiles and apply FFT on them as well
std::vector<std::vector<cv::Mat>> alt_tiles_list(reference_tiles.size());
int num_tiles_row = alternate_channel_i_list[0].rows / offset - 1;
int num_tiles_col = alternate_channel_i_list[0].cols / offset - 1;
std::vector<cv::Mat> alt_tiles;
for (int y = 0; y < num_tiles_row; ++y) {
for (int x = 0; x < num_tiles_col; ++x) {
alt_tiles.clear();
// Get reference tile location
int top_left_y = y * offset;
int top_left_x = x * offset;
for (int i = 0; i < alternate_channel_i_list.size(); ++i) {
// Get alignment displacement
int displacement_y, displacement_x;
std::tie(displacement_y, displacement_x) = alignments[i + 1][y][x];
// Get tile
cv::Mat alt_tile = alternate_channel_i_list[i](cv::Rect(top_left_x + displacement_x, top_left_y + displacement_y, TILE_SIZE, TILE_SIZE));
// Apply FFT
cv::Mat alt_tile_DFT;
alt_tile.convertTo(alt_tile_DFT, CV_32F);
cv::dft(alt_tile_DFT, alt_tile_DFT, cv::DFT_COMPLEX_OUTPUT);
alt_tiles.push_back(alt_tile_DFT);
}
alt_tiles_list[y * num_tiles_col + x] = alt_tiles;
}
}
// 4.2 Temporal Denoising
reference_tiles_DFT = temporal_denoise(reference_tiles_DFT, alt_tiles_list, noise_variance, TEMPORAL_FACTOR);
// 4.3 Spatial Denoising
reference_tiles_DFT = spatial_denoise(reference_tiles_DFT, alternate_channel_i_list.size(), noise_variance, SPATIAL_FACTOR);
//now reference tiles are temporally and spatially denoised
// Apply IFFT on reference tiles (frequency to spatial)
std::vector<cv::Mat> denoised_tiles;
for (auto dft_tile : reference_tiles_DFT) {
cv::Mat denoised_tile;
cv::divide(dft_tile, TILE_SIZE * TILE_SIZE, dft_tile);
cv::dft(dft_tile, denoised_tile, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT);
denoised_tiles.push_back(denoised_tile);
}
reference_tiles = denoised_tiles;
// 4.4 Cosine Window Merging
// Process tiles through 2D cosine window
std::vector<cv::Mat> windowed_tiles;
for (auto tile : reference_tiles) {
windowed_tiles.push_back(cosineWindow2D(tile));
}
// Merge tiles
return mergeTiles(windowed_tiles, channel_image.rows, channel_image.cols);
}
std::vector<cv::Mat> merge::temporal_denoise(std::vector<cv::Mat> tiles, std::vector<std::vector<cv::Mat>> alt_tiles, std::vector<float> noise_variance, float temporal_factor) {
// goal: temporially denoise using the weiner filter
// input:
// 1. array of 2D dft tiles of the reference image
// 2. array of 2D dft tiles of the aligned alternate image
// 3. estimated noise variance
// 4. temporal factor
// return: merged image patches dft
// calculate noise scaling
double temporal_noise_scaling = (TILE_SIZE * TILE_SIZE * (2.0 / 16)) * TEMPORAL_FACTOR;
// loop across tiles
std::vector<cv::Mat> denoised;
for (int i = 0; i < tiles.size(); ++i) {
// sum of pairwise denoising
cv::Mat tile_sum = tiles[i].clone();
double coeff = temporal_noise_scaling * noise_variance[i];
// Ref tile
cv::Mat tile = tiles[i];
// Alt tiles
std::vector<cv::Mat> alt_tiles_i = alt_tiles[i];
for (int j = 0; j < alt_tiles_i.size(); ++j) {
// Alt tile
cv::Mat alt_tile = alt_tiles_i[j];
// Tile difference
cv::Mat diff = tile - alt_tile;
// Calculate absolute difference
cv::Mat complexMats[2];
cv::split(diff, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
// find shrinkage operator A
cv::Mat shrinkage;
cv::divide(absolute_diff, absolute_diff + coeff, shrinkage);
cv::merge(std::vector<cv::Mat>{shrinkage, shrinkage}, shrinkage);
// Interpolation
tile_sum += alt_tile + diff.mul(shrinkage);
}
// Average by num of frames
cv::divide(tile_sum, alt_tiles_i.size() + 1, tile_sum);
denoised.push_back(tile_sum);
}
return denoised;
}
std::vector<cv::Mat> merge::spatial_denoise(std::vector<cv::Mat> tiles, int num_alts, std::vector<float> noise_variance, float spatial_factor) {
double spatial_noise_scaling = (TILE_SIZE * TILE_SIZE * (1.0 / 16)) * spatial_factor;
// Calculate |w| using ifftshift
cv::Mat row_distances = cv::Mat::zeros(1, TILE_SIZE, CV_32F);
for(int i = 0; i < TILE_SIZE; ++i) {
row_distances.at<float>(i) = i - offset;
}
row_distances = cv::repeat(row_distances.t(), 1, TILE_SIZE);
cv::Mat col_distances = row_distances.t();
cv::Mat distances;
cv::sqrt(row_distances.mul(row_distances) + col_distances.mul(col_distances), distances);
ifftshift(distances);
std::vector<cv::Mat> denoised;
// Loop through all tiles
for (int i = 0; i < tiles.size(); ++i) {
cv::Mat tile = tiles[i];
float coeff = noise_variance[i] / (num_alts + 1) * spatial_noise_scaling;
// Calculate absolute difference
cv::Mat complexMats[2];
cv::split(tile, complexMats); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
cv::magnitude(complexMats[0], complexMats[1], complexMats[0]); // planes[0] = magnitude
cv::Mat absolute_diff = complexMats[0].mul(complexMats[0]);
// Division
cv::Mat scale;
cv::divide(absolute_diff, absolute_diff + distances * coeff, scale);
cv::merge(std::vector<cv::Mat>{scale, scale}, scale);
denoised.push_back(tile.mul(scale));
}
return denoised;
}
} // namespace hdrplus