You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1621 lines
56 KiB
C++

// ***************************************************************** -*- C++ -*-
/*
* Copyright (C) 2004-2008 Andreas Huggel <ahuggel@gmx.net>
*
* This program is part of the Exiv2 distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA.
*/
/*!
@file value.hpp
@brief Value interface and concrete subclasses
@version $Rev$
@author Andreas Huggel (ahu)
<a href="mailto:ahuggel@gmx.net">ahuggel@gmx.net</a>
@date 09-Jan-04, ahu: created
11-Feb-04, ahu: isolated as a component
31-Jul-04, brad: added Time, Data and String values
*/
#ifndef VALUE_HPP_
#define VALUE_HPP_
// *****************************************************************************
// included header files
#include "types.hpp"
// + standard includes
#include <string>
#include <vector>
#include <map>
#include <iostream>
#include <sstream>
#include <memory>
#include <cstring>
// *****************************************************************************
// namespace extensions
namespace Exiv2 {
// *****************************************************************************
// class definitions
/*!
@brief Common interface for all types of values used with metadata.
The interface provides a uniform way to access values independent of
their actual C++ type for simple tasks like reading the values from a
string or data buffer. For other tasks, like modifying values you may
need to downcast it to a specific subclass to access its interface.
*/
class Value {
public:
//! Shortcut for a %Value auto pointer.
typedef std::auto_ptr<Value> AutoPtr;
//! @name Creators
//@{
//! Constructor, taking a type id to initialize the base class with
explicit Value(TypeId typeId);
//! Virtual destructor.
virtual ~Value() {}
//@}
//! @name Manipulators
//@{
/*!
@brief Read the value from a character buffer.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Applicable byte order (little or big endian).
@return 0 if successful.
*/
virtual int read(const byte* buf, long len, ByteOrder byteOrder) =0;
/*!
@brief Set the value from a string buffer. The format of the string
corresponds to that of the write() method, i.e., a string
obtained through the write() method can be read by this
function.
@param buf The string to read from.
@return 0 if successful.
*/
virtual int read(const std::string& buf) =0;
/*!
@brief Set the data area, if the value has one by copying (cloning)
the buffer pointed to by buf.
Values may have a data area, which can contain additional
information besides the actual value. This method is used to set such
a data area.
@param buf Pointer to the source data area
@param len Size of the data area
@return Return -1 if the value has no data area, else 0.
*/
virtual int setDataArea(const byte* buf, long len);
//@}
//! @name Accessors
//@{
//! Return the type identifier (Exif data format type).
TypeId typeId() const { return type_; }
/*!
@brief Return an auto-pointer to a copy of itself (deep copy).
The caller owns this copy and the auto-pointer ensures that
it will be deleted.
*/
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@param buf Data buffer to write to.
@param byteOrder Applicable byte order (little or big endian).
@return Number of bytes written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder) const =0;
//! Return the number of components of the value
virtual long count() const =0;
//! Return the size of the value in bytes
virtual long size() const =0;
/*!
@brief Write the value to an output stream. You do not usually have
to use this function; it is used for the implementation of
the output operator for %Value,
operator<<(std::ostream &os, const Value &value).
*/
virtual std::ostream& write(std::ostream& os) const =0;
/*!
@brief Return the value as a string. Implemented in terms of
write(std::ostream& os) const of the concrete class.
*/
std::string toString() const;
/*!
@brief Return the <EM>n</EM>-th component of the value as a string.
The default implementation returns toString(). The behaviour
of this method may be undefined if there is no <EM>n</EM>-th
component.
*/
virtual std::string toString(long n) const;
/*!
@brief Convert the <EM>n</EM>-th component of the value to a long.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
@return The converted value.
*/
virtual long toLong(long n =0) const =0;
/*!
@brief Convert the <EM>n</EM>-th component of the value to a float.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
@return The converted value.
*/
virtual float toFloat(long n =0) const =0;
/*!
@brief Convert the <EM>n</EM>-th component of the value to a Rational.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
@return The converted value.
*/
virtual Rational toRational(long n =0) const =0;
//! Return the size of the data area, 0 if there is none.
virtual long sizeDataArea() const { return 0; }
/*!
@brief Return a copy of the data area if the value has one. The
caller owns this copy and DataBuf ensures that it will be
deleted.
Values may have a data area, which can contain additional
information besides the actual value. This method is used to access
such a data area.
@return A DataBuf containing a copy of the data area or an empty
DataBuf if the value does not have a data area assigned.
*/
virtual DataBuf dataArea() const { return DataBuf(0, 0); };
/*!
@brief Check the \em ok status indicator. After a to<Type> conversion,
this indicator shows whether the conversion was successful.
*/
bool ok() const { return ok_; }
//@}
/*!
@brief A (simple) factory to create a Value type.
The following Value subclasses are created depending on typeId:<BR><BR>
<TABLE>
<TR><TD class="indexkey"><B>typeId</B></TD><TD class="indexvalue"><B>%Value subclass</B></TD></TR>
<TR><TD class="indexkey">invalidTypeId</TD><TD class="indexvalue">%DataValue(invalidTypeId)</TD></TR>
<TR><TD class="indexkey">unsignedByte</TD><TD class="indexvalue">%DataValue(unsignedByte)</TD></TR>
<TR><TD class="indexkey">asciiString</TD><TD class="indexvalue">%AsciiValue</TD></TR>
<TR><TD class="indexkey">string</TD><TD class="indexvalue">%StringValue</TD></TR>
<TR><TD class="indexkey">unsignedShort</TD><TD class="indexvalue">%ValueType &lt; uint16_t &gt;</TD></TR>
<TR><TD class="indexkey">unsignedLong</TD><TD class="indexvalue">%ValueType &lt; uint32_t &gt;</TD></TR>
<TR><TD class="indexkey">unsignedRational</TD><TD class="indexvalue">%ValueType &lt; URational &gt;</TD></TR>
<TR><TD class="indexkey">invalid6</TD><TD class="indexvalue">%DataValue(invalid6)</TD></TR>
<TR><TD class="indexkey">undefined</TD><TD class="indexvalue">%DataValue</TD></TR>
<TR><TD class="indexkey">signedShort</TD><TD class="indexvalue">%ValueType &lt; int16_t &gt;</TD></TR>
<TR><TD class="indexkey">signedLong</TD><TD class="indexvalue">%ValueType &lt; int32_t &gt;</TD></TR>
<TR><TD class="indexkey">signedRational</TD><TD class="indexvalue">%ValueType &lt; Rational &gt;</TD></TR>
<TR><TD class="indexkey">date</TD><TD class="indexvalue">%DateValue</TD></TR>
<TR><TD class="indexkey">time</TD><TD class="indexvalue">%TimeValue</TD></TR>
<TR><TD class="indexkey">comment</TD><TD class="indexvalue">%CommentValue</TD></TR>
<TR><TD class="indexkey">xmpText</TD><TD class="indexvalue">%XmpTextValue</TD></TR>
<TR><TD class="indexkey">xmpBag</TD><TD class="indexvalue">%XmpArrayValue</TD></TR>
<TR><TD class="indexkey">xmpSeq</TD><TD class="indexvalue">%XmpArrayValue</TD></TR>
<TR><TD class="indexkey">xmpAlt</TD><TD class="indexvalue">%XmpArrayValue</TD></TR>
<TR><TD class="indexkey">langAlt</TD><TD class="indexvalue">%LangAltValue</TD></TR>
<TR><TD class="indexkey"><EM>default:</EM></TD><TD class="indexvalue">%DataValue(typeId)</TD></TR>
</TABLE>
@param typeId Type of the value.
@return Auto-pointer to the newly created Value. The caller owns this
copy and the auto-pointer ensures that it will be deleted.
*/
static AutoPtr create(TypeId typeId);
protected:
/*!
@brief Assignment operator. Protected so that it can only be used
by subclasses but not directly.
*/
Value& operator=(const Value& rhs);
// DATA
mutable bool ok_; //!< Indicates the status of the previous to<Type> conversion
private:
//! Internal virtual copy constructor.
virtual Value* clone_() const =0;
// DATA
TypeId type_; //!< Type of the data
}; // class Value
//! Output operator for Value types
inline std::ostream& operator<<(std::ostream& os, const Value& value)
{
return value.write(os);
}
//! %Value for an undefined data type.
class DataValue : public Value {
public:
//! Shortcut for a %DataValue auto pointer.
typedef std::auto_ptr<DataValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
explicit DataValue(TypeId typeId =undefined) : Value(typeId) {}
//! Constructor
DataValue(const byte* buf,
long len, ByteOrder byteOrder =invalidByteOrder,
TypeId typeId =undefined)
: Value(typeId) { read(buf, len, byteOrder); }
//! Virtual destructor.
virtual ~DataValue() {}
//@}
//! @name Manipulators
//@{
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not
used by this method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@return 0 if successful.
*/
virtual int read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
//! Set the data from a string of integer values (e.g., "0 1 2 3")
virtual int read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not needed.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
virtual long count() const { return size(); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
/*!
@brief Return the <EM>n</EM>-th component of the value as a string.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
*/
virtual std::string toString(long n) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
//@}
private:
//! Internal virtual copy constructor.
virtual DataValue* clone_() const;
public:
//! Type used to store the data.
typedef std::vector<byte> ValueType;
// DATA
ValueType value_; //!< Stores the data value
}; // class DataValue
/*!
@brief Abstract base class for a string based %Value type.
Uses a std::string to store the value and implements defaults for
most operations.
*/
class StringValueBase : public Value {
public:
//! Shortcut for a %StringValueBase auto pointer.
typedef std::auto_ptr<StringValueBase> AutoPtr;
//! @name Creators
//@{
//! Constructor for subclasses
explicit StringValueBase(TypeId typeId)
: Value(typeId) {}
//! Constructor for subclasses
StringValueBase(TypeId typeId, const std::string& buf)
: Value(typeId) { read(buf); }
//! Copy constructor
StringValueBase(const StringValueBase& rhs)
: Value(rhs), value_(rhs.value_) {}
//! Virtual destructor.
virtual ~StringValueBase() {}
//@}
//! @name Manipulators
//@{
//! Read the value from buf. This default implementation uses buf as it is.
virtual int read(const std::string& buf);
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@return 0 if successful.
*/
virtual int read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
virtual long count() const { return size(); }
virtual long size() const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
virtual std::ostream& write(std::ostream& os) const;
//@}
protected:
//! Assignment operator.
StringValueBase& operator=(const StringValueBase& rhs);
//! Internal virtual copy constructor.
virtual StringValueBase* clone_() const =0;
public:
// DATA
std::string value_; //!< Stores the string value.
}; // class StringValueBase
/*!
@brief %Value for string type.
This can be a plain Ascii string or a multipe byte encoded string. It is
left to caller to decode and encode the string to and from readable
text if that is required.
*/
class StringValue : public StringValueBase {
public:
//! Shortcut for a %StringValue auto pointer.
typedef std::auto_ptr<StringValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
StringValue()
: StringValueBase(string) {}
//! Constructor
explicit StringValue(const std::string& buf)
: StringValueBase(string, buf) {}
//! Virtual destructor.
virtual ~StringValue() {}
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
//@}
private:
//! Internal virtual copy constructor.
virtual StringValue* clone_() const;
}; // class StringValue
/*!
@brief %Value for an Ascii string type.
This class is for null terminated single byte Ascii strings.
This class also ensures that the string is null terminated.
*/
class AsciiValue : public StringValueBase {
public:
//! Shortcut for a %AsciiValue auto pointer.
typedef std::auto_ptr<AsciiValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
AsciiValue()
: StringValueBase(asciiString) {}
//! Constructor
explicit AsciiValue(const std::string& buf)
: StringValueBase(asciiString, buf) {}
//! Virtual destructor.
virtual ~AsciiValue() {}
//@}
//! @name Manipulators
//@{
using StringValueBase::read;
/*!
@brief Set the value to that of the string buf. Overrides base class
to append a terminating '\\0' character if buf doesn't end
with '\\0'.
*/
virtual int read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write the value to an output stream. Any trailing '\\0'
characters of the ASCII value are stripped and not written to
the output stream.
*/
virtual std::ostream& write(std::ostream& os) const;
//@}
private:
//! Internal virtual copy constructor.
virtual AsciiValue* clone_() const;
}; // class AsciiValue
/*!
@brief %Value for an Exif comment.
This can be a plain Ascii string or a multipe byte encoded string. The
comment is expected to be encoded in the character set indicated (default
undefined), but this is not checked. It is left to caller to decode and
encode the string to and from readable text if that is required.
*/
class CommentValue : public StringValueBase {
public:
//! Character set identifiers for the character sets defined by %Exif
enum CharsetId { ascii, jis, unicode, undefined,
invalidCharsetId, lastCharsetId };
//! Information pertaining to the defined character sets
struct CharsetTable {
//! Constructor
CharsetTable(CharsetId charsetId,
const char* name,
const char* code);
CharsetId charsetId_; //!< Charset id
const char* name_; //!< Name of the charset
const char* code_; //!< Code of the charset
}; // struct CharsetTable
//! Charset information lookup functions. Implemented as a static class.
class CharsetInfo {
//! Prevent construction: not implemented.
CharsetInfo() {}
//! Prevent copy-construction: not implemented.
CharsetInfo(const CharsetInfo&);
//! Prevent assignment: not implemented.
CharsetInfo& operator=(const CharsetInfo&);
public:
//! Return the name for a charset id
static const char* name(CharsetId charsetId);
//! Return the code for a charset id
static const char* code(CharsetId charsetId);
//! Return the charset id for a name
static CharsetId charsetIdByName(const std::string& name);
//! Return the charset id for a code
static CharsetId charsetIdByCode(const std::string& code);
private:
static const CharsetTable charsetTable_[];
}; // class CharsetInfo
//! Shortcut for a %CommentValue auto pointer.
typedef std::auto_ptr<CommentValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
CommentValue()
: StringValueBase(Exiv2::undefined) {}
//! Constructor, uses read(const std::string& comment)
explicit CommentValue(const std::string& comment);
//! Virtual destructor.
virtual ~CommentValue() {}
//@}
//! @name Manipulators
//@{
using StringValueBase::read;
/*!
@brief Read the value from a comment
The format of \em comment is:
<BR>
<CODE>[charset=["]Ascii|Jis|Unicode|Undefined["] ]comment</CODE>
<BR>
The default charset is Undefined.
@return 0 if successful<BR>
1 if an invalid character set is encountered
*/
int read(const std::string& comment);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write the comment in a format which can be read by
read(const std::string& comment).
*/
std::ostream& write(std::ostream& os) const;
//! Return the comment (without a charset="..." prefix)
std::string comment() const;
//! Return the charset id of the comment
CharsetId charsetId() const;
//@}
private:
//! Internal virtual copy constructor.
virtual CommentValue* clone_() const;
}; // class CommentValue
/*!
@brief Base class for all Exiv2 values used to store XMP property values.
*/
class XmpValue : public Value {
public:
//! Shortcut for a %XmpValue auto pointer.
typedef std::auto_ptr<XmpValue> AutoPtr;
//! XMP array types.
enum XmpArrayType { xaNone, xaAlt, xaBag, xaSeq };
//! XMP structure indicator.
enum XmpStruct { xsNone, xsStruct };
//! @name Creators
//@{
explicit XmpValue(TypeId typeId);
//@}
//! @name Accessors
//@{
//! Return XMP array type, indicates if an XMP value is an array.
XmpArrayType xmpArrayType() const;
//! Return XMP struct, indicates if an XMP value is a structure.
XmpStruct xmpStruct() const;
virtual long size() const;
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
//@}
//! @name Manipulators
//@{
//! Set the XMP array type to indicate that an XMP value is an array.
void setXmpArrayType(XmpArrayType xmpArrayType);
//! Set the XMP struct type to indicate that an XMP value is a structure.
void setXmpStruct(XmpStruct xmpStruct =xsStruct);
/*!
@brief Read the value from a character buffer.
Uses read(const std::string& buf)
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@return 0 if successful.
*/
virtual int read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
virtual int read(const std::string& buf) =0;
//@}
/*!
@brief Return XMP array type for an array Value TypeId, xaNone if
\em typeId is not an XMP array value type.
*/
static XmpArrayType xmpArrayType(TypeId typeId);
protected:
/*!
@brief Assignment operator. Protected so that it can only be used
by subclasses but not directly.
*/
XmpValue& operator=(const XmpValue& rhs);
private:
// DATA
XmpArrayType xmpArrayType_; //!< Type of XMP array
XmpStruct xmpStruct_; //!< XMP structure indicator
}; // class XmpValue
/*!
@brief %Value type suitable for simple XMP properties and
XMP nodes of complex types which are not parsed into
specific values.
Uses a std::string to store the value.
*/
class XmpTextValue : public XmpValue {
public:
//! Shortcut for a %XmpTextValue auto pointer.
typedef std::auto_ptr<XmpTextValue> AutoPtr;
//! @name Creators
//@{
//! Constructor.
XmpTextValue();
//! Constructor, reads the value from a string.
explicit XmpTextValue(const std::string& buf);
//@}
//! @name Manipulators
//@{
using XmpValue::read;
/*!
@brief Read a simple property value from \em buf to set the value.
Sets the value to the contents of \em buf. A optional keyword,
\em type is supported to set the XMP value type. This is useful for
complex value types for which Exiv2 does not have direct support.
The format of \em buf is:
<BR>
<CODE>[type=["]Alt|Bag|Seq|Struct["] ]text</CODE>
<BR>
@return 0 if successful.
*/
virtual int read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const;
long size() const;
virtual long count() const;
/*!
@brief Convert the value to a long.
The optional parameter \em n is not used and is ignored.
@return The converted value.
*/
virtual long toLong(long n =0) const;
/*!
@brief Convert the value to a float.
The optional parameter \em n is not used and is ignored.
@return The converted value.
*/
virtual float toFloat(long n =0) const;
/*!
@brief Convert the value to a Rational.
The optional parameter \em n is not used and is ignored.
@return The converted value.
*/
virtual Rational toRational(long n =0) const;
virtual std::ostream& write(std::ostream& os) const;
//@}
private:
//! Internal virtual copy constructor.
virtual XmpTextValue* clone_() const;
public:
// DATA
std::string value_; //!< Stores the string values.
}; // class XmpTextValue
/*!
@brief %Value type for simple arrays. Each item in the array is a simple
value, without qualifiers. The array may be an ordered (\em seq),
unordered (\em bag) or alternative array (\em alt). The array
items must not contain qualifiers. For language alternatives use
LangAltValue.
Uses a vector of std::string to store the value(s).
*/
class XmpArrayValue : public XmpValue {
public:
//! Shortcut for a %XmpArrayValue auto pointer.
typedef std::auto_ptr<XmpArrayValue> AutoPtr;
//! @name Creators
//@{
//! Constructor. \em typeId can be one of xmpBag, xmpSeq or xmpAlt.
explicit XmpArrayValue(TypeId typeId =xmpBag);
//@}
//! @name Manipulators
//@{
using XmpValue::read;
/*!
@brief Read a simple property value from \em buf and append it
to the value.
Appends \em buf to the value after the last existing array element.
Subsequent calls will therefore populate multiple array elements in
the order they are read.
@return 0 if successful.
*/
virtual int read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const;
virtual long count() const;
/*!
@brief Return the <EM>n</EM>-th component of the value as a string.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
*/
virtual std::string toString(long n) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
/*!
@brief Write all elements of the value to \em os, separated by commas.
@note The output of this method cannot directly be used as the parameter
for read().
*/
virtual std::ostream& write(std::ostream& os) const;
//@}
private:
//! Internal virtual copy constructor.
virtual XmpArrayValue* clone_() const;
public:
//! Type used to store XMP array elements.
typedef std::vector<std::string> ValueType;
// DATA
std::vector<std::string> value_; //!< Stores the string values.
}; // class XmpArrayValue
/*!
@brief %Value type for XMP language alternative properties.
A language alternative is an array consisting of simple text values,
each of which has a language qualifier.
*/
class LangAltValue : public XmpValue {
public:
//! Shortcut for a %LangAltValue auto pointer.
typedef std::auto_ptr<LangAltValue> AutoPtr;
//! @name Creators
//@{
//! Constructor.
LangAltValue();
//! Constructor, reads the value from a string.
explicit LangAltValue(const std::string& buf);
//@}
//! @name Manipulators
//@{
using XmpValue::read;
/*!
@brief Read a simple property value from \em buf and append it
to the value.
Appends \em buf to the value after the last existing array element.
Subsequent calls will therefore populate multiple array elements in
the order they are read.
The format of \em buf is:
<BR>
<CODE>[lang=["]language code["] ]text</CODE>
<BR>
The XMP default language code <CODE>x-default</CODE> is used if
\em buf doesn't start with the keyword <CODE>lang</CODE>.
@return 0 if successful.
*/
virtual int read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const;
virtual long count() const;
/*!
@brief Return the <EM>n</EM>-th component of the value as a string.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th component.
*/
virtual std::string toString(long n) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
/*!
@brief Write all elements of the value to \em os, separated by commas.
@note The output of this method cannot directly be used as the parameter
for read().
*/
virtual std::ostream& write(std::ostream& os) const;
//@}
private:
//! Internal virtual copy constructor.
virtual LangAltValue* clone_() const;
public:
//! Type used to store language alternative arrays.
typedef std::map<std::string, std::string> ValueType;
// DATA
/*!
@brief Map to store the language alternative values. The language
qualifier is used as the key for the map entries.
*/
ValueType value_;
}; // class LangAltValue
/*!
@brief %Value for simple ISO 8601 dates
This class is limited to parsing simple date strings in the ISO 8601
format CCYYMMDD (century, year, month, day).
*/
class DateValue : public Value {
public:
//! Shortcut for a %DateValue auto pointer.
typedef std::auto_ptr<DateValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
DateValue();
//! Constructor
DateValue(int year, int month, int day);
//! Virtual destructor.
virtual ~DateValue() {}
//@}
//! Simple Date helper structure
struct Date
{
Date() : year(0), month(0), day(0) {}
int year; //!< Year
int month; //!< Month
int day; //!< Day
};
//! @name Manipulators
//@{
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@return 0 if successful<BR>
1 in case of an unsupported date format
*/
virtual int read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
/*!
@brief Set the value to that of the string buf.
@param buf String containing the date
@return 0 if successful<BR>
1 in case of an unsupported date format
*/
virtual int read(const std::string& buf);
//! Set the date
void setDate(const Date& src);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
//! Return date struct containing date information
virtual const Date& getDate() const { return date_; }
virtual long count() const { return size(); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
//! Return the value as a UNIX calender time converted to long.
virtual long toLong(long n =0) const;
//! Return the value as a UNIX calender time converted to float.
virtual float toFloat(long n =0) const
{ return static_cast<float>(toLong(n)); }
//! Return the value as a UNIX calender time converted to Rational.
virtual Rational toRational(long n =0) const
{ return Rational(toLong(n), 1); }
//@}
private:
//! Internal virtual copy constructor.
virtual DateValue* clone_() const;
// DATA
Date date_;
}; // class DateValue
/*!
@brief %Value for simple ISO 8601 times.
This class is limited to handling simple time strings in the ISO 8601
format HHMMSS<EFBFBD>HHMM where HHMMSS refers to local hour, minute and
seconds and <EFBFBD>HHMM refers to hours and minutes ahead or behind
Universal Coordinated Time.
*/
class TimeValue : public Value {
public:
//! Shortcut for a %TimeValue auto pointer.
typedef std::auto_ptr<TimeValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
TimeValue();
//! Constructor
TimeValue(int hour, int minute, int second =0,
int tzHour =0, int tzMinute =0);
//! Virtual destructor.
virtual ~TimeValue() {}
//@}
//! Simple Time helper structure
struct Time
{
Time() : hour(0), minute(0), second(0), tzHour(0), tzMinute(0) {}
int hour; //!< Hour
int minute; //!< Minute
int second; //!< Second
int tzHour; //!< Hours ahead or behind UTC
int tzMinute; //!< Minutes ahead or behind UTC
};
//! @name Manipulators
//@{
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@return 0 if successful<BR>
1 in case of an unsupported time format
*/
virtual int read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
/*!
@brief Set the value to that of the string buf.
@param buf String containing the time.
@return 0 if successful<BR>
1 in case of an unsupported time format
*/
virtual int read(const std::string& buf);
//! Set the time
void setTime(const Time& src);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
//! Return time struct containing time information
virtual const Time& getTime() const { return time_; }
virtual long count() const { return size(); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
//! Returns number of seconds in the day in UTC.
virtual long toLong(long n =0) const;
//! Returns number of seconds in the day in UTC converted to float.
virtual float toFloat(long n =0) const
{ return static_cast<float>(toLong(n)); }
//! Returns number of seconds in the day in UTC converted to Rational.
virtual Rational toRational(long n =0) const
{ return Rational(toLong(n), 1); }
//@}
private:
//! @name Manipulators
//@{
/*!
@brief Set time from \em buf if it conforms to \em format
(3 input items).
This function only sets the hour, minute and second parts of time_.
@param buf A 0 terminated C-string containing the time to parse.
@param format Format string for sscanf().
@return 0 if successful, else 1.
*/
int scanTime3(const char* buf, const char* format);
/*!
@brief Set time from \em buf if it conforms to \em format
(6 input items).
This function sets all parts of time_.
@param buf A 0 terminated C-string containing the time to parse.
@param format Format string for sscanf().
@return 0 if successful, else 1.
*/
int scanTime6(const char* buf, const char* format);
//@}
//! @name Accessors
//@{
//! Internal virtual copy constructor.
virtual TimeValue* clone_() const;
//@}
// DATA
Time time_;
}; // class TimeValue
//! Template to determine the TypeId for a type T
template<typename T> TypeId getType();
//! Specialization for an unsigned short
template<> inline TypeId getType<uint16_t>() { return unsignedShort; }
//! Specialization for an unsigned long
template<> inline TypeId getType<uint32_t>() { return unsignedLong; }
//! Specialization for an unsigned rational
template<> inline TypeId getType<URational>() { return unsignedRational; }
//! Specialization for a signed short
template<> inline TypeId getType<int16_t>() { return signedShort; }
//! Specialization for a signed long
template<> inline TypeId getType<int32_t>() { return signedLong; }
//! Specialization for a signed rational
template<> inline TypeId getType<Rational>() { return signedRational; }
// No default implementation: let the compiler/linker complain
// template<typename T> inline TypeId getType() { return invalid; }
/*!
@brief Template for a %Value of a basic type. This is used for unsigned
and signed short, long and rationals.
*/
template<typename T>
class ValueType : public Value {
public:
21 years ago
//! Shortcut for a %ValueType\<T\> auto pointer.
typedef std::auto_ptr<ValueType<T> > AutoPtr;
//! @name Creators
//@{
//! Default constructor.
ValueType() : Value(getType<T>()), pDataArea_(0), sizeDataArea_(0) {}
//! Constructor
ValueType(const byte* buf, long len, ByteOrder byteOrder);
//! Constructor
explicit ValueType(const T& val, ByteOrder byteOrder =littleEndian);
//! Copy constructor
ValueType(const ValueType<T>& rhs);
//! Virtual destructor.
virtual ~ValueType();
//@}
//! @name Manipulators
//@{
//! Assignment operator.
ValueType<T>& operator=(const ValueType<T>& rhs);
virtual int read(const byte* buf, long len, ByteOrder byteOrder);
/*!
@brief Set the data from a string of values of type T (e.g.,
"0 1 2 3" or "1/2 1/3 1/4" depending on what T is).
Generally, the accepted input format is the same as that
produced by the write() method.
*/
virtual int read(const std::string& buf);
/*!
@brief Set the data area. This method copies (clones) the buffer
pointed to by buf.
*/
virtual int setDataArea(const byte* buf, long len);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
virtual long copy(byte* buf, ByteOrder byteOrder) const;
virtual long count() const { return static_cast<long>(value_.size()); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
/*!
@brief Return the <EM>n</EM>-th component of the value as a string.
The behaviour of this method may be undefined if there is no
<EM>n</EM>-th
component.
*/
virtual std::string toString(long n) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
//! Return the size of the data area.
virtual long sizeDataArea() const { return sizeDataArea_; }
/*!
@brief Return a copy of the data area in a DataBuf. The caller owns
this copy and DataBuf ensures that it will be deleted.
*/
virtual DataBuf dataArea() const;
//@}
//! Container for values
typedef std::vector<T> ValueList;
//! Iterator type defined for convenience.
typedef typename std::vector<T>::iterator iterator;
//! Const iterator type defined for convenience.
typedef typename std::vector<T>::const_iterator const_iterator;
// DATA
/*!
@brief The container for all values. In your application, if you know
what subclass of Value you're dealing with (and possibly the T)
then you can access this STL container through the usual
standard library functions.
*/
ValueList value_;
private:
//! Internal virtual copy constructor.
virtual ValueType<T>* clone_() const;
// DATA
//! Pointer to the buffer, 0 if none has been allocated
byte* pDataArea_;
//! The current size of the buffer
long sizeDataArea_;
}; // class ValueType
//! Unsigned short value type
typedef ValueType<uint16_t> UShortValue;
//! Unsigned long value type
typedef ValueType<uint32_t> ULongValue;
//! Unsigned rational value type
typedef ValueType<URational> URationalValue;
//! Signed short value type
typedef ValueType<int16_t> ShortValue;
//! Signed long value type
typedef ValueType<int32_t> LongValue;
//! Signed rational value type
typedef ValueType<Rational> RationalValue;
// *****************************************************************************
// free functions, template and inline definitions
/*!
@brief Read a value of type T from the data buffer.
We need this template function for the ValueType template classes.
There are only specializations of this function available; no default
implementation is provided.
@param buf Pointer to the data buffer to read from.
@param byteOrder Applicable byte order (little or big endian).
@return A value of type T.
*/
template<typename T> T getValue(const byte* buf, ByteOrder byteOrder);
// Specialization for a 2 byte unsigned short value.
template<>
inline uint16_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getUShort(buf, byteOrder);
}
// Specialization for a 4 byte unsigned long value.
template<>
inline uint32_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getULong(buf, byteOrder);
}
// Specialization for an 8 byte unsigned rational value.
template<>
inline URational getValue(const byte* buf, ByteOrder byteOrder)
{
return getURational(buf, byteOrder);
}
// Specialization for a 2 byte signed short value.
template<>
inline int16_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getShort(buf, byteOrder);
}
// Specialization for a 4 byte signed long value.
template<>
inline int32_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getLong(buf, byteOrder);
}
// Specialization for an 8 byte signed rational value.
template<>
inline Rational getValue(const byte* buf, ByteOrder byteOrder)
{
return getRational(buf, byteOrder);
}
/*!
@brief Convert a value of type T to data, write the data to the data buffer.
We need this template function for the ValueType template classes.
There are only specializations of this function available; no default
implementation is provided.
@param buf Pointer to the data buffer to write to.
@param t Value to be converted.
@param byteOrder Applicable byte order (little or big endian).
@return The number of bytes written to the buffer.
*/
template<typename T> long toData(byte* buf, T t, ByteOrder byteOrder);
/*!
@brief Specialization to write an unsigned short to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, uint16_t t, ByteOrder byteOrder)
{
return us2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write an unsigned long to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, uint32_t t, ByteOrder byteOrder)
{
return ul2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write an unsigned rational to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, URational t, ByteOrder byteOrder)
{
return ur2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed short to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, int16_t t, ByteOrder byteOrder)
{
return s2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed long to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, int32_t t, ByteOrder byteOrder)
{
return l2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed rational to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, Rational t, ByteOrder byteOrder)
{
return r2Data(buf, t, byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const byte* buf, long len, ByteOrder byteOrder)
: Value(getType<T>()), pDataArea_(0), sizeDataArea_(0)
{
read(buf, len, byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const T& val, ByteOrder byteOrder)
: Value(getType<T>()), pDataArea_(0), sizeDataArea_(0)
{
read(reinterpret_cast<const byte*>(&val),
TypeInfo::typeSize(typeId()),
byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const ValueType<T>& rhs)
: Value(rhs), value_(rhs.value_), pDataArea_(0), sizeDataArea_(0)
{
if (rhs.sizeDataArea_ > 0) {
pDataArea_ = new byte[rhs.sizeDataArea_];
std::memcpy(pDataArea_, rhs.pDataArea_, rhs.sizeDataArea_);
sizeDataArea_ = rhs.sizeDataArea_;
}
}
template<typename T>
ValueType<T>::~ValueType()
{
delete[] pDataArea_;
}
template<typename T>
ValueType<T>& ValueType<T>::operator=(const ValueType<T>& rhs)
{
if (this == &rhs) return *this;
Value::operator=(rhs);
value_ = rhs.value_;
byte* tmp = 0;
if (rhs.sizeDataArea_ > 0) {
tmp = new byte[rhs.sizeDataArea_];
std::memcpy(tmp, rhs.pDataArea_, rhs.sizeDataArea_);
}
delete[] pDataArea_;
pDataArea_ = tmp;
sizeDataArea_ = rhs.sizeDataArea_;
return *this;
}
template<typename T>
int ValueType<T>::read(const byte* buf, long len, ByteOrder byteOrder)
{
value_.clear();
for (long i = 0; i < len; i += TypeInfo::typeSize(typeId())) {
value_.push_back(getValue<T>(buf + i, byteOrder));
}
return 0;
}
template<typename T>
int ValueType<T>::read(const std::string& buf)
{
std::istringstream is(buf);
T tmp;
value_.clear();
while (!(is.eof())) {
is >> tmp;
if (is.fail()) return 1;
value_.push_back(tmp);
}
return 0;
}
template<typename T>
long ValueType<T>::copy(byte* buf, ByteOrder byteOrder) const
{
long offset = 0;
typename ValueList::const_iterator end = value_.end();
for (typename ValueList::const_iterator i = value_.begin(); i != end; ++i) {
offset += toData(buf + offset, *i, byteOrder);
}
return offset;
}
template<typename T>
long ValueType<T>::size() const
{
return static_cast<long>(TypeInfo::typeSize(typeId()) * value_.size());
}
template<typename T>
ValueType<T>* ValueType<T>::clone_() const
{
return new ValueType<T>(*this);
}
template<typename T>
std::ostream& ValueType<T>::write(std::ostream& os) const
{
typename ValueList::const_iterator end = value_.end();
typename ValueList::const_iterator i = value_.begin();
while (i != end) {
os << *i;
if (++i != end) os << " ";
}
return os;
}
template<typename T>
inline std::string ValueType<T>::toString(long n) const
{
ok_ = true;
return Exiv2::toString(value_[n]);
}
// Default implementation
template<typename T>
inline long ValueType<T>::toLong(long n) const
{
ok_ = true;
return value_[n];
}
// Specialization for rational
template<>
inline long ValueType<Rational>::toLong(long n) const
{
ok_ = (value_[n].second != 0);
return value_[n].first / value_[n].second;
}
// Specialization for unsigned rational
template<>
inline long ValueType<URational>::toLong(long n) const
{
ok_ = (value_[n].second != 0);
return value_[n].first / value_[n].second;
}
// Default implementation
template<typename T>
inline float ValueType<T>::toFloat(long n) const
{
ok_ = true;
return static_cast<float>(value_[n]);
}
// Specialization for rational
template<>
inline float ValueType<Rational>::toFloat(long n) const
{
ok_ = (value_[n].second != 0);
return static_cast<float>(value_[n].first) / value_[n].second;
}
// Specialization for unsigned rational
template<>
inline float ValueType<URational>::toFloat(long n) const
{
ok_ = (value_[n].second != 0);
return static_cast<float>(value_[n].first) / value_[n].second;
}
// Default implementation
template<typename T>
inline Rational ValueType<T>::toRational(long n) const
{
ok_ = true;
return Rational(value_[n], 1);
}
// Specialization for rational
template<>
inline Rational ValueType<Rational>::toRational(long n) const
{
ok_ = true;
return Rational(value_[n].first, value_[n].second);
}
// Specialization for unsigned rational
template<>
inline Rational ValueType<URational>::toRational(long n) const
{
ok_ = true;
return Rational(value_[n].first, value_[n].second);
}
template<typename T>
inline DataBuf ValueType<T>::dataArea() const
{
return DataBuf(pDataArea_, sizeDataArea_);
}
template<typename T>
inline int ValueType<T>::setDataArea(const byte* buf, long len)
{
byte* tmp = 0;
if (len > 0) {
tmp = new byte[len];
std::memcpy(tmp, buf, len);
}
delete[] pDataArea_;
pDataArea_ = tmp;
sizeDataArea_ = len;
return 0;
}
} // namespace Exiv2
#endif // #ifndef VALUE_HPP_