You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1226 lines
43 KiB
C++

// ***************************************************************** -*- C++ -*-
/*
* Copyright (C) 2004, 2005 Andreas Huggel <ahuggel@gmx.net>
*
* This program is part of the Exiv2 distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*!
@file value.hpp
@brief Value interface and concrete subclasses
@version $Rev$
@author Andreas Huggel (ahu)
<a href="mailto:ahuggel@gmx.net">ahuggel@gmx.net</a>
@date 09-Jan-04, ahu: created
11-Feb-04, ahu: isolated as a component
31-Jul-04, brad: added Time, Data and String values
*/
#ifndef VALUE_HPP_
#define VALUE_HPP_
// *****************************************************************************
// included header files
#include "types.hpp"
// + standard includes
#include <string>
#include <vector>
#include <iostream>
#include <sstream>
#include <memory>
// *****************************************************************************
// namespace extensions
namespace Exiv2 {
// *****************************************************************************
// class definitions
/*!
@brief Common interface for all types of values used with metadata.
The interface provides a uniform way to access values independent from
their actual C++ type for simple tasks like reading the values from a
string or data buffer. For other tasks, like modifying values you may
need to downcast it to the actual subclass of %Value so that you can
access the subclass specific interface.
*/
class Value {
public:
//! Shortcut for a %Value auto pointer.
typedef std::auto_ptr<Value> AutoPtr;
//! @name Creators
//@{
//! Constructor, taking a type id to initialize the base class with
explicit Value(TypeId typeId)
: type_(typeId) {}
//! Copy constructor
Value(const Value& rhs)
: type_(rhs.type_) {}
//! Virtual destructor.
virtual ~Value() {}
//@}
//! @name Manipulators
//@{
/*!
@brief Read the value from a character buffer.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Applicable byte order (little or big endian).
*/
virtual void read(const byte* buf, long len, ByteOrder byteOrder) =0;
/*!
@brief Set the value from a string buffer. The format of the string
corresponds to that of the write() method, i.e., a string
obtained through the write() method can be read by this
function.
@param buf The string to read from.
*/
virtual void read(const std::string& buf) =0;
/*!
@brief Set the data area, if the value has one by copying (cloning)
the buffer pointed to by buf.
Values may have a data area, which can contain additional
information besides the actual value. This method is used to set such
a data area.
@param buf Pointer to the source data area
@param len Size of the data area
@return Return -1 if the value has no data area, else 0.
*/
virtual int setDataArea(const byte* buf, long len) { return -1; }
//@}
//! @name Accessors
//@{
//! Return the type identifier (Exif data format type).
TypeId typeId() const { return type_; }
/*!
@brief Return the value as a string. Implemented in terms of
write(std::ostream& os) const of the concrete class.
*/
std::string toString() const;
/*!
@brief Return an auto-pointer to a copy of itself (deep copy).
The caller owns this copy and the auto-pointer ensures that
it will be deleted.
*/
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@param buf Data buffer to write to.
@param byteOrder Applicable byte order (little or big endian).
@return Number of bytes written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder) const =0;
//! Return the number of components of the value
virtual long count() const =0;
//! Return the size of the value in bytes
virtual long size() const =0;
/*!
@brief Write the value to an output stream. You do not usually have
to use this function; it is used for the implementation of
the output operator for %Value,
operator<<(std::ostream &os, const Value &value).
*/
virtual std::ostream& write(std::ostream& os) const =0;
/*!
@brief Convert the n-th component of the value to a long. The
behaviour of this method may be undefined if there is no
n-th component.
@return The converted value.
*/
virtual long toLong(long n =0) const =0;
/*!
@brief Convert the n-th component of the value to a float. The
behaviour of this method may be undefined if there is no
n-th component.
@return The converted value.
*/
virtual float toFloat(long n =0) const =0;
/*!
@brief Convert the n-th component of the value to a Rational. The
behaviour of this method may be undefined if there is no
n-th component.
@return The converted value.
*/
virtual Rational toRational(long n =0) const =0;
//! Return the size of the data area, 0 if there is none.
virtual long sizeDataArea() const { return 0; }
/*!
@brief Return a copy of the data area if the value has one. The
caller owns this copy and DataBuf ensures that it will be
deleted.
Values may have a data area, which can contain additional
information besides the actual value. This method is used to access
such a data area.
@return A DataBuf containing a copy of the data area or an empty
DataBuf if the value does not have a data area assigned.
*/
virtual DataBuf dataArea() const { return DataBuf(0, 0); };
//@}
/*!
@brief A (simple) factory to create a Value type.
The following Value subclasses are created depending on typeId:<BR><BR>
<TABLE>
<TR><TD class="indexkey"><B>typeId</B></TD><TD class="indexvalue"><B>%Value subclass</B></TD></TR>
<TR><TD class="indexkey">invalidTypeId</TD><TD class="indexvalue">%DataValue(invalidTypeId)</TD></TR>
<TR><TD class="indexkey">unsignedByte</TD><TD class="indexvalue">%DataValue(unsignedByte)</TD></TR>
<TR><TD class="indexkey">asciiString</TD><TD class="indexvalue">%AsciiValue</TD></TR>
<TR><TD class="indexkey">string</TD><TD class="indexvalue">%StringValue</TD></TR>
<TR><TD class="indexkey">unsignedShort</TD><TD class="indexvalue">%ValueType &lt; uint16_t &gt;</TD></TR>
<TR><TD class="indexkey">unsignedLong</TD><TD class="indexvalue">%ValueType &lt; uint32_t &gt;</TD></TR>
<TR><TD class="indexkey">unsignedRational</TD><TD class="indexvalue">%ValueType &lt; URational &gt;</TD></TR>
<TR><TD class="indexkey">invalid6</TD><TD class="indexvalue">%DataValue(invalid6)</TD></TR>
<TR><TD class="indexkey">undefined</TD><TD class="indexvalue">%DataValue</TD></TR>
<TR><TD class="indexkey">signedShort</TD><TD class="indexvalue">%ValueType &lt; int16_t &gt;</TD></TR>
<TR><TD class="indexkey">signedLong</TD><TD class="indexvalue">%ValueType &lt; int32_t &gt;</TD></TR>
<TR><TD class="indexkey">signedRational</TD><TD class="indexvalue">%ValueType &lt; Rational &gt;</TD></TR>
<TR><TD class="indexkey">date</TD><TD class="indexvalue">%DateValue</TD></TR>
<TR><TD class="indexkey">time</TD><TD class="indexvalue">%TimeValue</TD></TR>
<TR><TD class="indexkey">comment</TD><TD class="indexvalue">%CommentValue</TD></TR>
<TR><TD class="indexkey"><EM>default:</EM></TD><TD class="indexvalue">%DataValue(typeId)</TD></TR>
</TABLE>
@param typeId Type of the value.
@return Auto-pointer to the newly created Value. The caller owns this
copy and the auto-pointer ensures that it will be deleted.
*/
static AutoPtr create(TypeId typeId);
protected:
/*!
@brief Assignment operator. Protected so that it can only be used
by subclasses but not directly.
*/
Value& operator=(const Value& rhs);
private:
//! Internal virtual copy constructor.
virtual Value* clone_() const =0;
// DATA
TypeId type_; //!< Type of the data
}; // class Value
//! Output operator for Value types
inline std::ostream& operator<<(std::ostream& os, const Value& value)
{
return value.write(os);
}
//! %Value for an undefined data type.
class DataValue : public Value {
public:
//! Shortcut for a %DataValue auto pointer.
typedef std::auto_ptr<DataValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
DataValue(TypeId typeId =undefined) : Value(typeId) {}
//! Constructor
DataValue(const byte* buf,
long len, ByteOrder byteOrder =invalidByteOrder,
TypeId typeId =undefined)
: Value(typeId) { read(buf, len, byteOrder); }
//! Virtual destructor.
virtual ~DataValue() {}
//@}
//! @name Manipulators
//@{
//! Assignment operator.
DataValue& operator=(const DataValue& rhs);
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not
used by this method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
*/
virtual void read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
//! Set the data from a string of integer values (e.g., "0 1 2 3")
virtual void read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not needed.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
virtual long count() const { return size(); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
virtual long toLong(long n =0) const { return value_[n]; }
virtual float toFloat(long n =0) const { return value_[n]; }
virtual Rational toRational(long n =0) const
{ return Rational(value_[n], 1); }
//@}
private:
//! Internal virtual copy constructor.
virtual DataValue* clone_() const;
// DATA
std::vector<byte> value_;
}; // class DataValue
/*!
@brief Abstract base class for a string based %Value type.
Uses a std::string to store the value and implements defaults for
most operations.
*/
class StringValueBase : public Value {
public:
//! Shortcut for a %StringValueBase auto pointer.
typedef std::auto_ptr<StringValueBase> AutoPtr;
//! @name Creators
//@{
//! Constructor for subclasses
StringValueBase(TypeId typeId)
: Value(typeId) {}
//! Constructor for subclasses
StringValueBase(TypeId typeId, const std::string& buf)
: Value(typeId) { read(buf); }
//! Copy constructor
StringValueBase(const StringValueBase& rhs)
: Value(rhs), value_(rhs.value_) {}
//! Virtual destructor.
virtual ~StringValueBase() {}
//@}
//! @name Manipulators
//@{
//! Assignment operator.
StringValueBase& operator=(const StringValueBase& rhs);
//! Read the value from buf. This default implementation uses buf as it is.
virtual void read(const std::string& buf);
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
*/
virtual void read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
virtual long count() const { return size(); }
virtual long size() const;
virtual long toLong(long n =0) const { return value_[n]; }
virtual float toFloat(long n =0) const { return value_[n]; }
virtual Rational toRational(long n =0) const
{ return Rational(value_[n], 1); }
virtual std::ostream& write(std::ostream& os) const;
//@}
protected:
//! Internal virtual copy constructor.
virtual StringValueBase* clone_() const =0;
// DATA
std::string value_; //!< Stores the string value.
}; // class StringValueBase
/*!
@brief %Value for string type.
This can be a plain Ascii string or a multipe byte encoded string. It is
left to caller to decode and encode the string to and from readable
text if that is required.
*/
class StringValue : public StringValueBase {
public:
//! Shortcut for a %StringValue auto pointer.
typedef std::auto_ptr<StringValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
StringValue()
: StringValueBase(string) {}
//! Constructor
StringValue(const std::string& buf)
: StringValueBase(string, buf) {}
//! Copy constructor
StringValue(const StringValue& rhs)
: StringValueBase(rhs) {}
//! Virtual destructor.
virtual ~StringValue() {}
//@}
//! @name Manipulators
//@{
StringValue& operator=(const StringValue& rhs);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
//@}
private:
//! Internal virtual copy constructor.
virtual StringValue* clone_() const;
}; // class StringValue
/*!
@brief %Value for an Ascii string type.
This class is for null terminated single byte Ascii strings.
This class also ensures that the string is null terminated.
*/
class AsciiValue : public StringValueBase {
public:
//! Shortcut for a %AsciiValue auto pointer.
typedef std::auto_ptr<AsciiValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
AsciiValue()
: StringValueBase(asciiString) {}
//! Constructor
AsciiValue(const std::string &buf)
: StringValueBase(asciiString, buf) {}
//! Copy constructor
AsciiValue(const AsciiValue& rhs)
: StringValueBase(rhs) {}
//! Virtual destructor.
virtual ~AsciiValue() {}
//@}
//! @name Manipulators
//@{
//! Assignment operator
AsciiValue& operator=(const AsciiValue& rhs);
/*!
@brief Set the value to that of the string buf. Overrides base class
to append a terminating '\\0' character if buf doesn't end
with '\\0'.
*/
virtual void read(const std::string& buf);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write the value to an output stream. Any trailing '\\0'
characters of the ASCII value are stripped and not written to
the output stream.
*/
virtual std::ostream& write(std::ostream& os) const;
//@}
private:
//! Internal virtual copy constructor.
virtual AsciiValue* clone_() const;
}; // class AsciiValue
/*!
@brief %Value for an Exif comment.
This can be a plain Ascii string or a multipe byte encoded string. The
comment is expected to be encoded in the character set indicated (default
undefined), but this is not checked. It is left to caller to decode and
encode the string to and from readable text if that is required.
*/
class CommentValue : public StringValueBase {
public:
//! Character set identifiers for the character sets defined by %Exif
enum CharsetId { ascii, jis, unicode, undefined,
invalidCharsetId, lastCharsetId };
//! Information pertaining to the defined character sets
struct CharsetTable {
//! Constructor
CharsetTable(CharsetId charsetId,
const char* name,
const char* code);
CharsetId charsetId_; //!< Charset id
const char* name_; //!< Name of the charset
const char* code_; //!< Code of the charset
}; // struct CharsetTable
//! Charset information lookup functions. Implemented as a static class.
class CharsetInfo {
//! Prevent construction: not implemented.
CharsetInfo() {}
//! Prevent copy-construction: not implemented.
CharsetInfo(const CharsetInfo&);
//! Prevent assignment: not implemented.
CharsetInfo& operator=(const CharsetInfo&);
public:
//! Return the name for a charset id
static const char* name(CharsetId charsetId);
//! Return the code for a charset id
static const char* code(CharsetId charsetId);
//! Return the charset id for a name
static CharsetId charsetIdByName(const std::string& name);
//! Return the charset id for a code
static CharsetId charsetIdByCode(const std::string& code);
private:
static const CharsetTable charsetTable_[];
}; // class CharsetInfo
//! Shortcut for a %CommentValue auto pointer.
typedef std::auto_ptr<CommentValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
CommentValue()
: StringValueBase(Exiv2::undefined) {}
//! Constructor, uses read(const std::string& comment)
CommentValue(const std::string& comment);
//! Copy constructor
CommentValue(const CommentValue& rhs)
: StringValueBase(rhs) {}
//! Virtual destructor.
virtual ~CommentValue() {}
//@}
//! @name Manipulators
//@{
//! Assignment operator.
CommentValue& operator=(const CommentValue& rhs);
/*!
@brief Read the value from a comment
The format of \em comment is:
<BR>
<CODE>[charset=["]Ascii|Jis|Unicode|Undefined["] ]comment</CODE>
<BR>
The default charset is Undefined.
@throw Error if an invalid character set is encountered
*/
void read(const std::string& comment);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write the comment in a format which can be read by
read(const std::string& comment).
*/
std::ostream& write(std::ostream& os) const;
//! Return the comment (without a charset="..." prefix)
std::string comment() const;
//! Return the charset id of the comment
CharsetId charsetId() const;
//@}
private:
//! Internal virtual copy constructor.
virtual CommentValue* clone_() const;
}; // class CommentValue
/*!
@brief %Value for simple ISO 8601 dates
This class is limited to parsing simple date strings in the ISO 8601
format CCYYMMDD (century, year, month, day).
*/
class DateValue : public Value {
public:
//! Shortcut for a %DateValue auto pointer.
typedef std::auto_ptr<DateValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
DateValue() : Value(date) { memset(&date_, 0, sizeof(date_)); }
//! Constructor
DateValue(int year, int month, int day);
//! Virtual destructor.
virtual ~DateValue() {}
//@}
//! Simple Date helper structure
struct Date
{
int year; //!< Year
int month; //!< Month
int day; //!< Day
};
//! @name Manipulators
//@{
//! Assignment operator.
DateValue& operator=(const DateValue& rhs);
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@throw Error in case of an unsupported date format
*/
virtual void read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
/*!
@brief Set the value to that of the string buf.
@param buf String containing the date
@throw Error in case of an unsupported date format
*/
virtual void read(const std::string& buf);
//! Set the date
void setDate(const Date& src);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
//! Return date struct containing date information
virtual const Date& getDate() const { return date_; }
virtual long count() const { return size(); }
virtual long size() const;
/*!
@brief Write the value to an output stream. .
*/
virtual std::ostream& write(std::ostream& os) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const
{ return static_cast<float>(toLong(n)); }
virtual Rational toRational(long n =0) const
{ return Rational(toLong(n), 1); }
//@}
private:
//! Internal virtual copy constructor.
virtual DateValue* clone_() const;
// DATA
Date date_;
}; // class DateValue
/*!
@brief %Value for simple ISO 8601 times.
This class is limited to handling simple time strings in the ISO 8601
format HHMMSS<EFBFBD>HHMM where HHMMSS refers to local hour, minute and
seconds and <EFBFBD>HHMM refers to hours and minutes ahead or behind
Universal Coordinated Time.
*/
class TimeValue : public Value {
public:
//! Shortcut for a %TimeValue auto pointer.
typedef std::auto_ptr<TimeValue> AutoPtr;
//! @name Creators
//@{
//! Default constructor.
TimeValue() : Value(time) { memset(&time_, 0, sizeof(time_)); }
//! Constructor
TimeValue(int hour, int minute, int second =0,
int tzHour =0, int tzMinute =0);
//! Virtual destructor.
virtual ~TimeValue() {}
//@}
//! Simple Time helper structure
struct Time
{
int hour; //!< Hour
int minute; //!< Minute
int second; //!< Second
int tzHour; //!< Hours ahead or behind UTC
int tzMinute; //!< Minutes ahead or behind UTC
};
//! @name Manipulators
//@{
//! Assignment operator.
TimeValue& operator=(const TimeValue& rhs);
/*!
@brief Read the value from a character buffer.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Pointer to the data buffer to read from
@param len Number of bytes in the data buffer
@param byteOrder Byte order. Not needed.
@throw Error in case of an unsupported time format
*/
virtual void read(const byte* buf,
long len,
ByteOrder byteOrder =invalidByteOrder);
/*!
@brief Set the value to that of the string buf.
@param buf String containing the time.
@throw Error in case of an unsupported time format
*/
virtual void read(const std::string& buf);
//! Set the time
void setTime(const Time& src);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
/*!
@brief Write value to a character data buffer.
The user must ensure that the buffer has enough memory. Otherwise
the call results in undefined behaviour.
@note The byte order is required by the interface but not used by this
method, so just use the default.
@param buf Data buffer to write to.
@param byteOrder Byte order. Not used.
@return Number of characters written.
*/
virtual long copy(byte* buf, ByteOrder byteOrder =invalidByteOrder) const;
//! Return time struct containing time information
virtual const Time& getTime() const { return time_; }
virtual long count() const { return size(); }
virtual long size() const;
/*!
@brief Write the value to an output stream. .
*/
virtual std::ostream& write(std::ostream& os) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const
{ return static_cast<float>(toLong(n)); }
virtual Rational toRational(long n =0) const
{ return Rational(toLong(n), 1); }
//@}
private:
//! Internal virtual copy constructor.
virtual TimeValue* clone_() const;
// DATA
Time time_;
}; // class TimeValue
//! Template to determine the TypeId for a type T
template<typename T> TypeId getType();
//! Specialization for an unsigned short
template<> inline TypeId getType<uint16_t>() { return unsignedShort; }
//! Specialization for an unsigned long
template<> inline TypeId getType<uint32_t>() { return unsignedLong; }
//! Specialization for an unsigned rational
template<> inline TypeId getType<URational>() { return unsignedRational; }
//! Specialization for a signed short
template<> inline TypeId getType<int16_t>() { return signedShort; }
//! Specialization for a signed long
template<> inline TypeId getType<int32_t>() { return signedLong; }
//! Specialization for a signed rational
template<> inline TypeId getType<Rational>() { return signedRational; }
// No default implementation: let the compiler/linker complain
// template<typename T> inline TypeId getType() { return invalid; }
/*!
@brief Template for a %Value of a basic type. This is used for unsigned
and signed short, long and rationals.
*/
template<typename T>
class ValueType : public Value {
public:
21 years ago
//! Shortcut for a %ValueType\<T\> auto pointer.
typedef std::auto_ptr<ValueType<T> > AutoPtr;
//! @name Creators
//@{
//! Default constructor.
ValueType() : Value(getType<T>()), pDataArea_(0), sizeDataArea_(0) {}
//! Constructor
ValueType(const byte* buf, long len, ByteOrder byteOrder);
//! Constructor
ValueType(const T& val, ByteOrder byteOrder =littleEndian);
//! Copy constructor
ValueType(const ValueType<T>& rhs);
//! Virtual destructor.
virtual ~ValueType();
//@}
//! @name Manipulators
//@{
//! Assignment operator.
ValueType<T>& operator=(const ValueType<T>& rhs);
virtual void read(const byte* buf, long len, ByteOrder byteOrder);
/*!
@brief Set the data from a string of values of type T (e.g.,
"0 1 2 3" or "1/2 1/3 1/4" depending on what T is).
Generally, the accepted input format is the same as that
produced by the write() method.
*/
virtual void read(const std::string& buf);
/*!
@brief Set the data area. This method copies (clones) the buffer
pointed to by buf.
*/
virtual int setDataArea(const byte* buf, long len);
//@}
//! @name Accessors
//@{
AutoPtr clone() const { return AutoPtr(clone_()); }
virtual long copy(byte* buf, ByteOrder byteOrder) const;
virtual long count() const { return static_cast<long>(value_.size()); }
virtual long size() const;
virtual std::ostream& write(std::ostream& os) const;
virtual long toLong(long n =0) const;
virtual float toFloat(long n =0) const;
virtual Rational toRational(long n =0) const;
//! Return the size of the data area.
virtual long sizeDataArea() const { return sizeDataArea_; }
/*!
@brief Return a copy of the data area in a DataBuf. The caller owns
this copy and DataBuf ensures that it will be deleted.
*/
virtual DataBuf dataArea() const;
//@}
//! Container for values
typedef std::vector<T> ValueList;
//! Iterator type defined for convenience.
typedef typename std::vector<T>::iterator iterator;
//! Const iterator type defined for convenience.
typedef typename std::vector<T>::const_iterator const_iterator;
// DATA
/*!
@brief The container for all values. In your application, if you know
what subclass of Value you're dealing with (and possibly the T)
then you can access this STL container through the usual
standard library functions.
*/
ValueList value_;
private:
//! Internal virtual copy constructor.
virtual ValueType<T>* clone_() const;
// DATA
//! Pointer to the buffer, 0 if none has been allocated
byte* pDataArea_;
//! The current size of the buffer
long sizeDataArea_;
}; // class ValueType
//! Unsigned short value type
typedef ValueType<uint16_t> UShortValue;
//! Unsigned long value type
typedef ValueType<uint32_t> ULongValue;
//! Unsigned rational value type
typedef ValueType<URational> URationalValue;
//! Signed short value type
typedef ValueType<int16_t> ShortValue;
//! Signed long value type
typedef ValueType<int32_t> LongValue;
//! Signed rational value type
typedef ValueType<Rational> RationalValue;
// *****************************************************************************
// template and inline definitions
/*!
@brief Read a value of type T from the data buffer.
We need this template function for the ValueType template classes.
There are only specializations of this function available; no default
implementation is provided.
@param buf Pointer to the data buffer to read from.
@param byteOrder Applicable byte order (little or big endian).
@return A value of type T.
*/
template<typename T> T getValue(const byte* buf, ByteOrder byteOrder);
// Specialization for a 2 byte unsigned short value.
template<>
inline uint16_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getUShort(buf, byteOrder);
}
// Specialization for a 4 byte unsigned long value.
template<>
inline uint32_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getULong(buf, byteOrder);
}
// Specialization for an 8 byte unsigned rational value.
template<>
inline URational getValue(const byte* buf, ByteOrder byteOrder)
{
return getURational(buf, byteOrder);
}
// Specialization for a 2 byte signed short value.
template<>
inline int16_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getShort(buf, byteOrder);
}
// Specialization for a 4 byte signed long value.
template<>
inline int32_t getValue(const byte* buf, ByteOrder byteOrder)
{
return getLong(buf, byteOrder);
}
// Specialization for an 8 byte signed rational value.
template<>
inline Rational getValue(const byte* buf, ByteOrder byteOrder)
{
return getRational(buf, byteOrder);
}
/*!
@brief Convert a value of type T to data, write the data to the data buffer.
We need this template function for the ValueType template classes.
There are only specializations of this function available; no default
implementation is provided.
@param buf Pointer to the data buffer to write to.
@param t Value to be converted.
@param byteOrder Applicable byte order (little or big endian).
@return The number of bytes written to the buffer.
*/
template<typename T> long toData(byte* buf, T t, ByteOrder byteOrder);
/*!
@brief Specialization to write an unsigned short to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, uint16_t t, ByteOrder byteOrder)
{
return us2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write an unsigned long to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, uint32_t t, ByteOrder byteOrder)
{
return ul2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write an unsigned rational to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, URational t, ByteOrder byteOrder)
{
return ur2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed short to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, int16_t t, ByteOrder byteOrder)
{
return s2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed long to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, int32_t t, ByteOrder byteOrder)
{
return l2Data(buf, t, byteOrder);
}
/*!
@brief Specialization to write a signed rational to the data buffer.
Return the number of bytes written.
*/
template<>
inline long toData(byte* buf, Rational t, ByteOrder byteOrder)
{
return r2Data(buf, t, byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const byte* buf, long len, ByteOrder byteOrder)
: Value(getType<T>()), pDataArea_(0), sizeDataArea_(0)
{
read(buf, len, byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const T& val, ByteOrder byteOrder)
: Value(getType<T>()), pDataArea_(0), sizeDataArea_(0)
{
read(reinterpret_cast<const byte*>(&val),
TypeInfo::typeSize(typeId()),
byteOrder);
}
template<typename T>
ValueType<T>::ValueType(const ValueType<T>& rhs)
: Value(rhs), value_(rhs.value_), pDataArea_(0), sizeDataArea_(0)
{
if (rhs.sizeDataArea_ > 0) {
pDataArea_ = new byte[rhs.sizeDataArea_];
memcpy(pDataArea_, rhs.pDataArea_, rhs.sizeDataArea_);
sizeDataArea_ = rhs.sizeDataArea_;
}
}
template<typename T>
ValueType<T>::~ValueType()
{
delete[] pDataArea_;
}
template<typename T>
ValueType<T>& ValueType<T>::operator=(const ValueType<T>& rhs)
{
if (this == &rhs) return *this;
Value::operator=(rhs);
value_ = rhs.value_;
byte* tmp = 0;
if (rhs.sizeDataArea_ > 0) {
tmp = new byte[rhs.sizeDataArea_];
memcpy(tmp, rhs.pDataArea_, rhs.sizeDataArea_);
}
delete[] pDataArea_;
pDataArea_ = tmp;
sizeDataArea_ = rhs.sizeDataArea_;
return *this;
}
template<typename T>
void ValueType<T>::read(const byte* buf, long len, ByteOrder byteOrder)
{
value_.clear();
for (long i = 0; i < len; i += TypeInfo::typeSize(typeId())) {
value_.push_back(getValue<T>(buf + i, byteOrder));
}
}
template<typename T>
void ValueType<T>::read(const std::string& buf)
{
std::istringstream is(buf);
T tmp;
value_.clear();
while (is >> tmp) {
value_.push_back(tmp);
}
}
template<typename T>
long ValueType<T>::copy(byte* buf, ByteOrder byteOrder) const
{
long offset = 0;
typename ValueList::const_iterator end = value_.end();
for (typename ValueList::const_iterator i = value_.begin(); i != end; ++i) {
offset += toData(buf + offset, *i, byteOrder);
}
return offset;
}
template<typename T>
long ValueType<T>::size() const
{
return static_cast<long>(TypeInfo::typeSize(typeId()) * value_.size());
}
template<typename T>
ValueType<T>* ValueType<T>::clone_() const
{
return new ValueType<T>(*this);
}
template<typename T>
std::ostream& ValueType<T>::write(std::ostream& os) const
{
typename ValueList::const_iterator end = value_.end();
typename ValueList::const_iterator i = value_.begin();
while (i != end) {
os << *i;
if (++i != end) os << " ";
}
return os;
}
// Default implementation
template<typename T>
inline long ValueType<T>::toLong(long n) const
{
return value_[n];
}
// Specialization for rational
template<>
inline long ValueType<Rational>::toLong(long n) const
{
return value_[n].first / value_[n].second;
}
// Specialization for unsigned rational
template<>
inline long ValueType<URational>::toLong(long n) const
{
return value_[n].first / value_[n].second;
}
// Default implementation
template<typename T>
inline float ValueType<T>::toFloat(long n) const
{
return static_cast<float>(value_[n]);
}
// Specialization for rational
template<>
inline float ValueType<Rational>::toFloat(long n) const
{
return static_cast<float>(value_[n].first) / value_[n].second;
}
// Specialization for unsigned rational
template<>
inline float ValueType<URational>::toFloat(long n) const
{
return static_cast<float>(value_[n].first) / value_[n].second;
}
// Default implementation
template<typename T>
inline Rational ValueType<T>::toRational(long n) const
{
return Rational(value_[n], 1);
}
// Specialization for rational
template<>
inline Rational ValueType<Rational>::toRational(long n) const
{
return Rational(value_[n].first, value_[n].second);
}
// Specialization for unsigned rational
template<>
inline Rational ValueType<URational>::toRational(long n) const
{
return Rational(value_[n].first, value_[n].second);
}
template<typename T>
inline DataBuf ValueType<T>::dataArea() const
{
return DataBuf(pDataArea_, sizeDataArea_);
}
template<typename T>
inline int ValueType<T>::setDataArea(const byte* buf, long len)
{
byte* tmp = 0;
if (len > 0) {
tmp = new byte[len];
memcpy(tmp, buf, len);
}
delete[] pDataArea_;
pDataArea_ = tmp;
sizeDataArea_ = len;
return 0;
}
} // namespace Exiv2
#endif // #ifndef VALUE_HPP_