// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004-2021 Exiv2 authors * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA. */ // ***************************************************************************** // included header files #include "config.h" #include "jpgimage.hpp" #include "tiffimage.hpp" #include "image_int.hpp" #include "error.hpp" #include "futils.hpp" #include "helper_functions.hpp" #include "enforce.hpp" #include "safe_op.hpp" #ifdef WIN32 #include #else #define BYTE char #define USHORT uint16_t #define ULONG uint32_t #endif #include "fff.h" // + standard includes #include // for EOF #include #include #include #include // ***************************************************************************** // class member definitions namespace Exiv2 { const byte JpegBase::dht_ = 0xc4; const byte JpegBase::dqt_ = 0xdb; const byte JpegBase::dri_ = 0xdd; const byte JpegBase::sos_ = 0xda; const byte JpegBase::eoi_ = 0xd9; const byte JpegBase::app0_ = 0xe0; const byte JpegBase::app1_ = 0xe1; const byte JpegBase::app2_ = 0xe2; const byte JpegBase::app13_ = 0xed; const byte JpegBase::com_ = 0xfe; // Start of Frame markers, nondifferential Huffman-coding frames const byte JpegBase::sof0_ = 0xc0; // start of frame 0, baseline DCT const byte JpegBase::sof1_ = 0xc1; // start of frame 1, extended sequential DCT, Huffman coding const byte JpegBase::sof2_ = 0xc2; // start of frame 2, progressive DCT, Huffman coding const byte JpegBase::sof3_ = 0xc3; // start of frame 3, lossless sequential, Huffman coding // Start of Frame markers, differential Huffman-coding frames const byte JpegBase::sof5_ = 0xc5; // start of frame 5, differential sequential DCT, Huffman coding const byte JpegBase::sof6_ = 0xc6; // start of frame 6, differential progressive DCT, Huffman coding const byte JpegBase::sof7_ = 0xc7; // start of frame 7, differential lossless, Huffman coding // Start of Frame markers, nondifferential arithmetic-coding frames const byte JpegBase::sof9_ = 0xc9; // start of frame 9, extended sequential DCT, arithmetic coding const byte JpegBase::sof10_ = 0xca; // start of frame 10, progressive DCT, arithmetic coding const byte JpegBase::sof11_ = 0xcb; // start of frame 11, lossless sequential, arithmetic coding // Start of Frame markers, differential arithmetic-coding frames const byte JpegBase::sof13_ = 0xcd; // start of frame 13, differential sequential DCT, arithmetic coding const byte JpegBase::sof14_ = 0xce; // start of frame 14, progressive DCT, arithmetic coding const byte JpegBase::sof15_ = 0xcf; // start of frame 15, differential lossless, arithmetic coding const char JpegBase::exifId_[] = "Exif\0\0"; const char JpegBase::jfifId_[] = "JFIF\0"; const char JpegBase::xmpId_[] = "http://ns.adobe.com/xap/1.0/\0"; const char JpegBase::iccId_[] = "ICC_PROFILE\0"; const char Photoshop::ps3Id_[] = "Photoshop 3.0\0"; const char* Photoshop::irbId_[] = {"8BIM", "AgHg", "DCSR", "PHUT"}; const char Photoshop::bimId_[] = "8BIM"; // deprecated const uint16_t Photoshop::iptc_ = 0x0404; const uint16_t Photoshop::preview_ = 0x040c; static inline bool inRange(int lo,int value, int hi) { return lo<=value && value <= hi; } static inline bool inRange2(int value,int lo1,int hi1, int lo2,int hi2) { return inRange(lo1,value,hi1) || inRange(lo2,value,hi2); } bool Photoshop::isIrb(const byte* pPsData, long sizePsData) { if (sizePsData < 4) return false; for (auto&& i : irbId_) { assert(strlen(i) == 4); if (memcmp(pPsData, i, 4) == 0) return true; } return false; } bool Photoshop::valid(const byte* pPsData, long sizePsData) { const byte *record = 0; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; const byte* pCur = pPsData; const byte* pEnd = pPsData + sizePsData; int ret = 0; while (pCur < pEnd && 0 == (ret = Photoshop::locateIptcIrb(pCur, static_cast(pEnd - pCur), &record, &sizeHdr, &sizeIptc))) { pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1); } return ret >= 0; } // Todo: Generalised from JpegBase::locateIptcData without really understanding // the format (in particular the header). So it remains to be confirmed // if this also makes sense for psTag != Photoshop::iptc int Photoshop::locateIrb(const byte* pPsData, long sizePsData, uint16_t psTag, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { assert(record); assert(sizeHdr); assert(sizeData); // Used for error checking long position = 0; #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Photoshop::locateIrb: "; #endif // Data should follow Photoshop format, if not exit while (position <= sizePsData - 12 && isIrb(pPsData + position, 4)) { const byte *hrd = pPsData + position; position += 4; uint16_t type = getUShort(pPsData + position, bigEndian); position += 2; #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "0x" << std::hex << type << std::dec << " "; #endif // Pascal string is padded to have an even size (including size byte) byte psSize = pPsData[position] + 1; psSize += (psSize & 1); position += psSize; if (position + 4 > sizePsData) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid or extended Photoshop IRB\n"; #endif return -2; } uint32_t dataSize = getULong(pPsData + position, bigEndian); position += 4; if (dataSize > static_cast(sizePsData - position)) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid Photoshop IRB data size " << dataSize << " or extended Photoshop IRB\n"; #endif return -2; } #ifndef EXIV2_DEBUG_MESSAGES if ( (dataSize & 1) && position + dataSize == static_cast(sizePsData)) { std::cerr << "Warning: " << "Photoshop IRB data is not padded to even size\n"; } #endif if (type == psTag) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "ok\n"; #endif *sizeData = dataSize; *sizeHdr = psSize + 10; *record = hrd; return 0; } // Data size is also padded to be even position += dataSize + (dataSize & 1); } #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "pPsData doesn't start with '8BIM'\n"; #endif if (position < sizePsData) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid or extended Photoshop IRB\n"; #endif return -2; } return 3; } // Photoshop::locateIrb int Photoshop::locateIptcIrb(const byte* pPsData, long sizePsData, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { return locateIrb(pPsData, sizePsData, iptc_, record, sizeHdr, sizeData); } int Photoshop::locatePreviewIrb(const byte* pPsData, long sizePsData, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { return locateIrb(pPsData, sizePsData, preview_, record, sizeHdr, sizeData); } DataBuf Photoshop::setIptcIrb(const byte* pPsData, long sizePsData, const IptcData& iptcData) { if (sizePsData > 0) assert(pPsData); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "IRB block at the beginning of Photoshop::setIptcIrb\n"; if (sizePsData == 0) std::cerr << " None.\n"; else hexdump(std::cerr, pPsData, sizePsData); #endif const byte* record = pPsData; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; DataBuf rc; // Safe to call with zero psData.size_ if (0 > Photoshop::locateIptcIrb(pPsData, sizePsData, &record, &sizeHdr, &sizeIptc)) { return rc; } Blob psBlob; const uint32_t sizeFront = static_cast(record - pPsData); // Write data before old record. if (sizePsData > 0 && sizeFront > 0) { append(psBlob, pPsData, sizeFront); } // Write new iptc record if we have it DataBuf rawIptc = IptcParser::encode(iptcData); if (rawIptc.size_ > 0) { byte tmpBuf[12]; std::memcpy(tmpBuf, Photoshop::irbId_[0], 4); us2Data(tmpBuf + 4, iptc_, bigEndian); tmpBuf[6] = 0; tmpBuf[7] = 0; ul2Data(tmpBuf + 8, rawIptc.size_, bigEndian); append(psBlob, tmpBuf, 12); append(psBlob, rawIptc.pData_, rawIptc.size_); // Data is padded to be even (but not included in size) if (rawIptc.size_ & 1) psBlob.push_back(0x00); } // Write existing stuff after record, // skip the current and all remaining IPTC blocks long pos = sizeFront; while (0 == Photoshop::locateIptcIrb(pPsData + pos, sizePsData - pos, &record, &sizeHdr, &sizeIptc)) { const long newPos = static_cast(record - pPsData); // Copy data up to the IPTC IRB if (newPos > pos) { append(psBlob, pPsData + pos, newPos - pos); } // Skip the IPTC IRB pos = newPos + sizeHdr + sizeIptc + (sizeIptc & 1); } if (pos < sizePsData) { append(psBlob, pPsData + pos, sizePsData - pos); } // Data is rounded to be even if (!psBlob.empty()) rc = DataBuf(&psBlob[0], static_cast(psBlob.size())); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "IRB block at the end of Photoshop::setIptcIrb\n"; if (rc.size_ == 0) std::cerr << " None.\n"; else hexdump(std::cerr, rc.pData_, rc.size_); #endif return rc; } // Photoshop::setIptcIrb JpegBase::JpegBase(int type, BasicIo::UniquePtr io, bool create, const byte initData[], long dataSize) : Image(type, mdExif | mdIptc | mdXmp | mdComment, std::move(io)) { if (create) { initImage(initData, dataSize); } } int JpegBase::initImage(const byte initData[], long dataSize) { if (io_->open() != 0) { return 4; } IoCloser closer(*io_); if (io_->write(initData, dataSize) != dataSize) { return 4; } return 0; } int JpegBase::advanceToMarker() const { int c = -1; // Skips potential padding between markers while ((c=io_->getb()) != 0xff) { if (c == EOF) return -1; } // Markers can start with any number of 0xff while ((c=io_->getb()) == 0xff) { if (c == EOF) return -2; } return c; } void JpegBase::readMetadata() { int rc = 0; // Todo: this should be the return value if (io_->open() != 0) throw Error(kerDataSourceOpenFailed, io_->path(), strError()); IoCloser closer(*io_); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); throw Error(kerNotAJpeg); } clearMetadata(); int search = 6 ; // Exif, ICC, XMP, Comment, IPTC, SOF const long bufMinSize = 36; long bufRead = 0; DataBuf buf(bufMinSize); Blob psBlob; bool foundCompletePsData = false; bool foundExifData = false; bool foundXmpData = false; bool foundIccData = false; // Read section marker int marker = advanceToMarker(); if (marker < 0) throw Error(kerNotAJpeg); while (marker != sos_ && marker != eoi_ && search > 0) { // Read size and signature (ok if this hits EOF) std::memset(buf.pData_, 0x0, buf.size_); bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(kerFailedToReadImageData); if (bufRead < 2) throw Error(kerNotAJpeg); uint16_t size = getUShort(buf.pData_, bigEndian); if ( !foundExifData && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { if (size < 8) { rc = 1; break; } // Seek to beginning and read the Exif data io_->seek(8 - bufRead, BasicIo::cur); DataBuf rawExif(size - 8); io_->read(rawExif.pData_, rawExif.size_); if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); ByteOrder bo = ExifParser::decode(exifData_, rawExif.pData_, rawExif.size_); setByteOrder(bo); if (rawExif.size_ > 0 && byteOrder() == invalidByteOrder) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode Exif metadata.\n"; #endif exifData_.clear(); } --search; foundExifData = true; } else if ( !foundXmpData && marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { if (size < 31) { rc = 6; break; } // Seek to beginning and read the XMP packet io_->seek(31 - bufRead, BasicIo::cur); DataBuf xmpPacket(size - 31); io_->read(xmpPacket.pData_, xmpPacket.size_); if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); xmpPacket_.assign(reinterpret_cast(xmpPacket.pData_), xmpPacket.size_); if (!xmpPacket_.empty() && XmpParser::decode(xmpData_, xmpPacket_)) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode XMP metadata.\n"; #endif } --search; foundXmpData = true; } else if ( !foundCompletePsData && marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { if (size < 16) { rc = 2; break; } // Read the rest of the APP13 segment io_->seek(16 - bufRead, BasicIo::cur); DataBuf psData(size - 16); io_->read(psData.pData_, psData.size_); if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found app13 segment, size = " << size << "\n"; //hexdump(std::cerr, psData.pData_, psData.size_); #endif // Append to psBlob append(psBlob, psData.pData_, psData.size_); // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(&psBlob[0], (long)psBlob.size())) { --search; foundCompletePsData = true; } } else if (marker == com_ && comment_.empty()) { if (size < 2) { rc = 3; break; } // JPEGs can have multiple comments, but for now only read // the first one (most jpegs only have one anyway). Comments // are simple single byte ISO-8859-1 strings. io_->seek(2 - bufRead, BasicIo::cur); DataBuf comment(size - 2); io_->read(comment.pData_, comment.size_); if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); comment_.assign(reinterpret_cast(comment.pData_), comment.size_); while ( comment_.length() && comment_.at(comment_.length()-1) == '\0') { comment_.erase(comment_.length()-1); } --search; } else if ( marker == app2_ && memcmp(buf.pData_ + 2, iccId_,11)==0) { if (size < 2+14) { rc = 8; break; } // ICC profile if ( ! foundIccData ) { foundIccData = true ; --search ; } int chunk = (int) buf.pData_[2+12]; int chunks = (int) buf.pData_[2+13]; // ICC1v43_2010-12.pdf header is 14 bytes // header = "ICC_PROFILE\0" (12 bytes) // chunk/chunks are a single byte // Spec 7.2 Profile bytes 0-3 size uint32_t s = getULong(buf.pData_ + (2+14) , bigEndian); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found ICC Profile chunk " << chunk << " of " << chunks << (chunk==1 ? " size: " : "" ) << (chunk==1 ? s : 0) << std::endl ; #endif io_->seek(-bufRead, BasicIo::cur); // back up to start of buffer (after marker) io_->seek( 14+2, BasicIo::cur); // step header // read in profile // #1286 profile can be padded long icc_size = size-2-14; if (chunk==1 && chunks==1) { enforce(s <= static_cast(icc_size), kerInvalidIccProfile); icc_size = s; } DataBuf icc(icc_size); io_->read( icc.pData_,icc.size_); if ( !iccProfileDefined() ) { // first block of profile setIccProfile(icc,chunk==chunks); } else { // extend existing profile DataBuf profile(Safe::add(iccProfile_.size_, icc.size_)); if ( iccProfile_.size_ ) { ::memcpy(profile.pData_,iccProfile_.pData_,iccProfile_.size_); } ::memcpy(profile.pData_+iccProfile_.size_,icc.pData_,icc.size_); setIccProfile(profile,chunk==chunks); } } else if ( pixelHeight_ == 0 && inRange2(marker,sof0_,sof3_,sof5_,sof15_) ) { // We hit a SOFn (start-of-frame) marker if (size < 8) { rc = 7; break; } pixelHeight_ = getUShort(buf.pData_ + 3, bigEndian); pixelWidth_ = getUShort(buf.pData_ + 5, bigEndian); if (pixelHeight_ != 0) --search; // Skip the remainder of the segment io_->seek(size-bufRead, BasicIo::cur); } else { if (size < 2) { rc = 4; break; } // Skip the remainder of the unknown segment if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerFailedToReadImageData); } // Read the beginning of the next segment marker = advanceToMarker(); if (marker < 0) { rc = 5; break; } } // while there are segments to process if (!psBlob.empty()) { // Find actual IPTC data within the psBlob Blob iptcBlob; const byte *record = 0; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; const byte* pCur = &psBlob[0]; const byte* pEnd = pCur + psBlob.size(); while ( pCur < pEnd && 0 == Photoshop::locateIptcIrb(pCur, static_cast(pEnd - pCur), &record, &sizeHdr, &sizeIptc)) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found IPTC IRB, size = " << sizeIptc << "\n"; #endif if (sizeIptc) { append(iptcBlob, record + sizeHdr, sizeIptc); } pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1); } if (!iptcBlob.empty() && IptcParser::decode(iptcData_, &iptcBlob[0], static_cast(iptcBlob.size()))) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode IPTC metadata.\n"; #endif iptcData_.clear(); } } // psBlob.size() > 0 if (rc != 0) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "JPEG format error, rc = " << rc << "\n"; #endif } } // JpegBase::readMetadata #define REPORT_MARKER if ( (option == kpsBasic||option == kpsRecursive) ) \ out << Internal::stringFormat("%8ld | 0xff%02x %-5s", \ io_->tell()-2,marker,nm[marker].c_str()) void JpegBase::printStructure(std::ostream& out, PrintStructureOption option, int depth) { if (io_->open() != 0) throw Error(kerDataSourceOpenFailed, io_->path(), strError()); // Ensure that this is the correct image type if (!isThisType(*io_, false)) { if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); throw Error(kerNotAJpeg); } bool bPrint = option == kpsBasic || option == kpsRecursive; std::vector iptcDataSegs; if (bPrint || option == kpsXMP || option == kpsIccProfile || option == kpsIptcErase) { // nmonic for markers std::string nm[256]; nm[0xd8] = "SOI"; nm[0xd9] = "EOI"; nm[0xda] = "SOS"; nm[0xdb] = "DQT"; nm[0xdd] = "DRI"; nm[0xfe] = "COM"; // 0xe0 .. 0xef are APPn // 0xc0 .. 0xcf are SOFn (except 4) nm[0xc4] = "DHT"; for (int i = 0; i <= 15; i++) { char MN[16]; /// \todo to be replaced by std::snprintf on master (only available in c++11) sprintf(MN, "APP%d", i); nm[0xe0 + i] = MN; if (i != 4) { sprintf(MN, "SOF%d", i); nm[0xc0 + i] = MN; } } // which markers have a length field? bool mHasLength[256]; for (int i = 0; i < 256; i++) mHasLength[i] = (i >= sof0_ && i <= sof15_) || (i >= app0_ && i <= (app0_ | 0x0F)) || (i == dht_ || i == dqt_ || i == dri_ || i == com_ || i == sos_); // Container for the signature bool bExtXMP = false; long bufRead = 0; const long bufMinSize = 36; DataBuf buf(bufMinSize); // Read section marker int marker = advanceToMarker(); if (marker < 0) throw Error(kerNotAJpeg); bool done = false; bool first = true; while (!done) { // print marker bytes if (first && bPrint) { out << "STRUCTURE OF JPEG FILE: " << io_->path() << std::endl; out << " address | marker | length | data" << std::endl; REPORT_MARKER; } first = false; bool bLF = bPrint; // Read size and signature std::memset(buf.pData_, 0x0, buf.size_); bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(kerFailedToReadImageData); if (bufRead < 2) throw Error(kerNotAJpeg); const uint16_t size = mHasLength[marker] ? getUShort(buf.pData_, bigEndian) : 0; if (bPrint && mHasLength[marker]) out << Internal::stringFormat(" | %7d ", size); // print signature for APPn if (marker >= app0_ && marker <= (app0_ | 0x0F)) { // http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf p75 const std::string signature = string_from_unterminated(reinterpret_cast(buf.pData_ + 2), buf.size_ - 2); // 728 rmills@rmillsmbp:~/gnu/exiv2/ttt $ exiv2 -pS test/data/exiv2-bug922.jpg // STRUCTURE OF JPEG FILE: test/data/exiv2-bug922.jpg // address | marker | length | data // 0 | 0xd8 SOI | 0 // 2 | 0xe1 APP1 | 911 | Exif..MM.*.......%.........#.... // 915 | 0xe1 APP1 | 870 | http://ns.adobe.com/xap/1.0/. 0) { io_->seek(-bufRead, BasicIo::cur); std::vector xmp(size + 1); io_->read(&xmp[0], size); int start = 0; // http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf // if we find HasExtendedXMP, set the flag and ignore this block // the first extended block is a copy of the Standard block. // a robust implementation allows extended blocks to be out of sequence // we could implement out of sequence with a dictionary of sequence/offset // and dumping the XMP in a post read operation similar to kpsIptcErase // for the moment, dumping 'on the fly' is working fine if (!bExtXMP) { while (xmp.at(start)) { start++; } start++; const std::string xmp_from_start = string_from_unterminated( reinterpret_cast(&xmp.at(start)), size - start); if (xmp_from_start.find("HasExtendedXMP", start) != xmp_from_start.npos) { start = size; // ignore this packet, we'll get on the next time around bExtXMP = true; } } else { start = 2 + 35 + 32 + 4 + 4; // Adobe Spec, p19 } out.write(reinterpret_cast(&xmp.at(start)), size - start); bufRead = size; done = !bExtXMP; } } else if (option == kpsIccProfile && signature == iccId_) { // extract ICCProfile if (size > 0) { io_->seek(-bufRead, BasicIo::cur); // back to buffer (after marker) io_->seek(14 + 2, BasicIo::cur); // step over header DataBuf icc(size - (14 + 2)); io_->read(icc.pData_, icc.size_); out.write(reinterpret_cast(icc.pData_), icc.size_); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "iccProfile size = " << icc.size_ << std::endl; #endif bufRead = size; } } else if (option == kpsIptcErase && signature == "Photoshop 3.0") { // delete IPTC data segment from JPEG if (size > 0) { io_->seek(-bufRead, BasicIo::cur); iptcDataSegs.push_back(io_->tell()); iptcDataSegs.push_back(size); } } else if (bPrint) { const size_t start = size > 0 ? 2 : 0; const size_t end = start + (size > 32 ? 32 : size); out << "| " << Internal::binaryToString(makeSlice(buf, start, end)); if (signature == iccId_) { // extract the chunk information from the buffer // // the buffer looks like this in this branch // ICC_PROFILE\0AB // where A & B are bytes (the variables chunk & chunks) // // We cannot extract the variables A and B from the signature string, as they are beyond the // null termination (and signature ends there). // => Read the chunk info from the DataBuf directly enforce(buf.size_ - 2 > 14, "Buffer too small to extract chunk information."); const int chunk = buf.pData_[2 + 12]; const int chunks = buf.pData_[2 + 13]; out << Internal::stringFormat(" chunk %d/%d", chunk, chunks); } } // for MPF: http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/MPF.html // for FLIR: http://owl.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html bool bFlir = option == kpsRecursive && marker == (app0_ + 1) && signature == "FLIR"; bool bExif = option == kpsRecursive && marker == (app0_ + 1) && signature == "Exif"; bool bMPF = option == kpsRecursive && marker == (app0_ + 2) && signature == "MPF"; bool bPS = option == kpsRecursive && signature == "Photoshop 3.0"; if (bFlir || bExif || bMPF || bPS) { // extract Exif data block which is tiff formatted if (size > 0) { out << std::endl; // allocate storage and current file position byte* exif = new byte[size]; uint32_t restore = io_->tell(); // copy the data to memory io_->seek(-bufRead, BasicIo::cur); io_->read(exif, size); uint32_t start = signature == "Exif" ? 8 : 6; uint32_t max = (uint32_t)size - 1; // is this an fff block? if (bFlir) { start = 0; bFlir = false; while (start < max) { if (std::strcmp((const char*)(exif + start), "FFF") == 0) { bFlir = true; break; } start++; } } // there is a header in FLIR, followed by a tiff block // Hunt down the tiff using brute force if (bFlir) { // FLIRFILEHEAD* pFFF = (FLIRFILEHEAD*) (exif+start) ; while (start < max) { if (exif[start] == 'I' && exif[start + 1] == 'I') break; if (exif[start] == 'M' && exif[start + 1] == 'M') break; start++; } if (start < max) std::cout << " FFF start = " << start << std::endl; // << " index = " << pFFF->dwIndexOff << std::endl; } if (bPS) { IptcData::printStructure(out, makeSlice(exif, 0, size), depth); } else { // create a copy on write memio object with the data, then print the structure BasicIo::UniquePtr p = BasicIo::UniquePtr(new MemIo(exif + start, size - start)); if (start < max) printTiffStructure(*p, out, option, depth); } // restore and clean up io_->seek(restore, Exiv2::BasicIo::beg); delete[] exif; bLF = false; } } } // print COM marker if (bPrint && marker == com_) { // size includes 2 for the two bytes for size! const int n = (size - 2) > 32 ? 32 : size - 2; // start after the two bytes out << "| " << Internal::binaryToString( makeSlice(buf, 2, n + 2 /* cannot overflow as n is at most size - 2 */)); } // Skip the segment if the size is known if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerFailedToReadImageData); if (bLF) out << std::endl; if (marker != sos_) { // Read the beginning of the next segment marker = advanceToMarker(); enforce(marker>=0, kerNoImageInInputData); REPORT_MARKER; } done |= marker == eoi_ || marker == sos_; if (done && bPrint) out << std::endl; } } if (option == kpsIptcErase && !iptcDataSegs.empty()) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << "iptc data blocks: " << iptcDataSegs.size() << std::endl; uint32_t toggle = 0; for (auto&& iptc : iptcDataSegs) { std::cout << iptc; if (toggle++ % 2) std::cout << std::endl; else std::cout << ' '; } #endif uint32_t count = (uint32_t)iptcDataSegs.size(); // figure out which blocks to copy uint64_t* pos = new uint64_t[count + 2]; pos[0] = 0; // copy the data that is not iptc auto it = iptcDataSegs.begin(); for (uint64_t i = 0; i < count; i++) { bool bOdd = (i % 2) != 0; bool bEven = !bOdd; pos[i + 1] = bEven ? *it : pos[i] + *it; ++it; } pos[count + 1] = io_->size() - pos[count]; #ifdef EXIV2_DEBUG_MESSAGES for (uint64_t i = 0; i < count + 2; i++) std::cout << pos[i] << " "; std::cout << std::endl; #endif // $ dd bs=1 skip=$((0)) count=$((13164)) if=ETH0138028.jpg of=E1.jpg // $ dd bs=1 skip=$((49304)) count=2000000 if=ETH0138028.jpg of=E2.jpg // cat E1.jpg E2.jpg > E.jpg // exiv2 -pS E.jpg // binary copy io_ to a temporary file BasicIo::UniquePtr tempIo(new MemIo); assert(tempIo.get() != 0); for (uint64_t i = 0; i < (count / 2) + 1; i++) { uint64_t start = pos[2 * i] + 2; // step JPG 2 byte marker if (start == 2) start = 0; // read the file 2 byte SOI long length = (long)(pos[2 * i + 1] - start); if (length) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << start << ":" << length << std::endl; #endif io_->seek(start, BasicIo::beg); DataBuf buf(length); io_->read(buf.pData_, buf.size_); tempIo->write(buf.pData_, buf.size_); } } delete[] pos; io_->seek(0, BasicIo::beg); io_->transfer(*tempIo); // may throw io_->seek(0, BasicIo::beg); readMetadata(); } } // JpegBase::printStructure void JpegBase::writeMetadata() { if (io_->open() != 0) { throw Error(kerDataSourceOpenFailed, io_->path(), strError()); } IoCloser closer(*io_); BasicIo::UniquePtr tempIo(new MemIo); assert (tempIo.get() != 0); doWriteMetadata(*tempIo); // may throw io_->close(); io_->transfer(*tempIo); // may throw } // JpegBase::writeMetadata void JpegBase::doWriteMetadata(BasicIo& outIo) { if (!io_->isopen()) throw Error(kerInputDataReadFailed); if (!outIo.isopen()) throw Error(kerImageWriteFailed); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(kerInputDataReadFailed); throw Error(kerNoImageInInputData); } const long bufMinSize = 36; long bufRead = 0; DataBuf buf(bufMinSize); const long seek = io_->tell(); int count = 0; int search = 0; int insertPos = 0; int comPos = 0; int skipApp1Exif = -1; int skipApp1Xmp = -1; bool foundCompletePsData = false; bool foundIccData = false; std::vector skipApp13Ps3; std::vector skipApp2Icc; int skipCom = -1; Blob psBlob; DataBuf rawExif; xmpData().usePacket(writeXmpFromPacket()); // Write image header if (writeHeader(outIo)) throw Error(kerImageWriteFailed); // Read section marker int marker = advanceToMarker(); if (marker < 0) throw Error(kerNoImageInInputData); // First find segments of interest. Normally app0 is first and we want // to insert after it. But if app0 comes after com, app1 and app13 then // don't bother. while (marker != sos_ && marker != eoi_ && search < 6) { // Read size and signature (ok if this hits EOF) bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(kerInputDataReadFailed); uint16_t size = getUShort(buf.pData_, bigEndian); if (marker == app0_) { if (size < 2) throw Error(kerNoImageInInputData); insertPos = count + 1; if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerNoImageInInputData); } else if (skipApp1Exif == -1 && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { if (size < 8) throw Error(kerNoImageInInputData); skipApp1Exif = count; ++search; // Seek to beginning and read the current Exif data io_->seek(8 - bufRead, BasicIo::cur); rawExif.alloc(size - 8); io_->read(rawExif.pData_, rawExif.size_); if (io_->error() || io_->eof()) throw Error(kerNoImageInInputData); } else if (skipApp1Xmp == -1 && marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { if (size < 31) throw Error(kerNoImageInInputData); skipApp1Xmp = count; ++search; if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerNoImageInInputData); } else if (marker == app2_ && memcmp(buf.pData_ + 2, iccId_, 11) == 0) { if (size < 31) throw Error(kerNoImageInInputData); skipApp2Icc.push_back(count); if (!foundIccData) { ++search; foundIccData = true; } if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerNoImageInInputData); } else if (!foundCompletePsData && marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found APP13 Photoshop PS3 segment\n"; #endif if (size < 16) throw Error(kerNoImageInInputData); skipApp13Ps3.push_back(count); io_->seek(16 - bufRead, BasicIo::cur); // Load PS data now to allow reinsertion at any point DataBuf psData(size - 16); io_->read(psData.pData_, size - 16); if (io_->error() || io_->eof()) throw Error(kerInputDataReadFailed); // Append to psBlob append(psBlob, psData.pData_, psData.size_); // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(&psBlob[0], (long)psBlob.size())) { foundCompletePsData = true; } } else if (marker == com_ && skipCom == -1) { if (size < 2) throw Error(kerNoImageInInputData); // Jpegs can have multiple comments, but for now only handle // the first one (most jpegs only have one anyway). skipCom = count; ++search; if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerNoImageInInputData); } else { if (size < 2) throw Error(kerNoImageInInputData); if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(kerNoImageInInputData); } // As in jpeg-6b/wrjpgcom.c: // We will insert the new comment marker just before SOFn. // This (a) causes the new comment to appear after, rather than before, // existing comments; and (b) ensures that comments come after any JFIF // or JFXX markers, as required by the JFIF specification. if (comPos == 0 && inRange2(marker, sof0_, sof3_, sof5_, sof15_)) { comPos = count; ++search; } marker = advanceToMarker(); if (marker < 0) throw Error(kerNoImageInInputData); ++count; } if (!foundCompletePsData && !psBlob.empty()) throw Error(kerNoImageInInputData); search += (int)skipApp13Ps3.size() + (int)skipApp2Icc.size(); if (comPos == 0) { if (marker == eoi_) comPos = count; else comPos = insertPos; ++search; } if (exifData_.count() > 0) ++search; if (!writeXmpFromPacket() && xmpData_.count() > 0) ++search; if (writeXmpFromPacket() && !xmpPacket_.empty()) ++search; if (foundCompletePsData || iptcData_.count() > 0) ++search; if (!comment_.empty()) ++search; io_->seek(seek, BasicIo::beg); count = 0; marker = advanceToMarker(); if (marker < 0) throw Error(kerNoImageInInputData); // To simplify this a bit, new segments are inserts at either the start // or right after app0. This is standard in most jpegs, but has the // potential to change segment ordering (which is allowed). // Segments are erased if there is no assigned metadata. while (marker != sos_ && search > 0) { // Read size and signature (ok if this hits EOF) bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(kerInputDataReadFailed); // Careful, this can be a meaningless number for empty // images with only an eoi_ marker uint16_t size = getUShort(buf.pData_, bigEndian); if (insertPos == count) { byte tmpBuf[64]; // Write Exif data first so that - if there is no app0 - we // create "Exif images" according to the Exif standard. if (exifData_.count() > 0) { Blob blob; ByteOrder bo = byteOrder(); if (bo == invalidByteOrder) { bo = littleEndian; setByteOrder(bo); } WriteMethod wm = ExifParser::encode(blob, rawExif.pData_, rawExif.size_, bo, exifData_); const byte* pExifData = rawExif.pData_; uint32_t exifSize = rawExif.size_; if (wm == wmIntrusive) { pExifData = !blob.empty() ? &blob[0] : 0; exifSize = static_cast(blob.size()); } if (exifSize > 0) { // Write APP1 marker, size of APP1 field, Exif id and Exif data tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (exifSize + 8 > 0xffff) throw Error(kerTooLargeJpegSegment, "Exif"); us2Data(tmpBuf + 2, static_cast(exifSize + 8), bigEndian); std::memcpy(tmpBuf + 4, exifId_, 6); if (outIo.write(tmpBuf, 10) != 10) throw Error(kerImageWriteFailed); // Write new Exif data buffer if (outIo.write(pExifData, exifSize) != static_cast(exifSize)) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } } if (!writeXmpFromPacket()) { if (XmpParser::encode(xmpPacket_, xmpData_, XmpParser::useCompactFormat | XmpParser::omitAllFormatting) > 1) { #ifndef SUPPRESS_WARNINGS EXV_ERROR << "Failed to encode XMP metadata.\n"; #endif } } if (!xmpPacket_.empty()) { // Write APP1 marker, size of APP1 field, XMP id and XMP packet tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (xmpPacket_.size() + 31 > 0xffff) throw Error(kerTooLargeJpegSegment, "XMP"); us2Data(tmpBuf + 2, static_cast(xmpPacket_.size() + 31), bigEndian); std::memcpy(tmpBuf + 4, xmpId_, 29); if (outIo.write(tmpBuf, 33) != 33) throw Error(kerImageWriteFailed); // Write new XMP packet if (outIo.write(reinterpret_cast(xmpPacket_.data()), static_cast(xmpPacket_.size())) != static_cast(xmpPacket_.size())) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } if (iccProfileDefined()) { // Write APP2 marker, size of APP2 field, and IccProfile // See comments in readMetadata() about the ICC embedding specification tmpBuf[0] = 0xff; tmpBuf[1] = app2_; int chunk_size = 256 * 256 - 40; // leave bytes for marker, header and padding int sizeProfile = (int)iccProfile_.size_; int chunks = 1 + (sizeProfile - 1) / chunk_size; if (iccProfile_.size_ > 256 * chunk_size) throw Error(kerTooLargeJpegSegment, "IccProfile"); for (int chunk = 0; chunk < chunks; chunk++) { int bytes = sizeProfile > chunk_size ? chunk_size : sizeProfile; // bytes to write sizeProfile -= bytes; // write JPEG marker (2 bytes) if (outIo.write(tmpBuf, 2) != 2) throw Error(kerImageWriteFailed); // JPEG Marker // write length (2 bytes). length includes the 2 bytes for the length us2Data(tmpBuf + 2, 2 + 14 + bytes, bigEndian); if (outIo.write(tmpBuf + 2, 2) != 2) throw Error(kerImageWriteFailed); // JPEG Length // write the ICC_PROFILE header (14 bytes) char pad[2]; pad[0] = chunk + 1; pad[1] = chunks; outIo.write((const byte*)iccId_, 12); outIo.write((const byte*)pad, 2); if (outIo.write(iccProfile_.pData_ + (chunk * chunk_size), bytes) != bytes) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); } --search; } if (foundCompletePsData || iptcData_.count() > 0) { // Set the new IPTC IRB, keeps existing IRBs but removes the // IPTC block if there is no new IPTC data to write DataBuf newPsData = Photoshop::setIptcIrb(!psBlob.empty() ? &psBlob[0] : 0, (long)psBlob.size(), iptcData_); const long maxChunkSize = 0xffff - 16; const byte* chunkStart = newPsData.pData_; const byte* chunkEnd = chunkStart + newPsData.size_; while (chunkStart < chunkEnd) { // Determine size of next chunk long chunkSize = static_cast(chunkEnd - chunkStart); if (chunkSize > maxChunkSize) { chunkSize = maxChunkSize; // Don't break at a valid IRB boundary const long writtenSize = static_cast(chunkStart - newPsData.pData_); if (Photoshop::valid(newPsData.pData_, writtenSize + chunkSize)) { // Since an IRB has minimum size 12, // (chunkSize - 8) can't be also a IRB boundary chunkSize -= 8; } } // Write APP13 marker, chunk size, and ps3Id tmpBuf[0] = 0xff; tmpBuf[1] = app13_; us2Data(tmpBuf + 2, static_cast(chunkSize + 16), bigEndian); std::memcpy(tmpBuf + 4, Photoshop::ps3Id_, 14); if (outIo.write(tmpBuf, 18) != 18) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); // Write next chunk of the Photoshop IRB data buffer if (outIo.write(chunkStart, chunkSize) != chunkSize) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); chunkStart += chunkSize; } --search; } } if (comPos == count) { if (!comment_.empty()) { byte tmpBuf[4]; // Write COM marker, size of comment, and string tmpBuf[0] = 0xff; tmpBuf[1] = com_; if (comment_.length() + 3 > 0xffff) throw Error(kerTooLargeJpegSegment, "JPEG comment"); us2Data(tmpBuf + 2, static_cast(comment_.length() + 3), bigEndian); if (outIo.write(tmpBuf, 4) != 4) throw Error(kerImageWriteFailed); if (outIo.write((byte*)comment_.data(), (long)comment_.length()) != (long)comment_.length()) throw Error(kerImageWriteFailed); if (outIo.putb(0) == EOF) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } --search; } if (marker == eoi_) { break; } if (skipApp1Exif == count || skipApp1Xmp == count || std::find(skipApp13Ps3.begin(), skipApp13Ps3.end(), count) != skipApp13Ps3.end() || std::find(skipApp2Icc.begin(), skipApp2Icc.end(), count) != skipApp2Icc.end() || skipCom == count) { --search; io_->seek(size - bufRead, BasicIo::cur); } else { if (size < 2) throw Error(kerNoImageInInputData); buf.alloc(size + 2); io_->seek(-bufRead - 2, BasicIo::cur); io_->read(buf.pData_, size + 2); if (io_->error() || io_->eof()) throw Error(kerInputDataReadFailed); if (outIo.write(buf.pData_, size + 2) != size + 2) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); } // Next marker marker = advanceToMarker(); if (marker < 0) throw Error(kerNoImageInInputData); ++count; } // Populate the fake data, only make sense for remoteio, httpio and sshio. // it avoids allocating memory for parts of the file that contain image-date. io_->populateFakeData(); // Copy rest of the Io io_->seek(-2, BasicIo::cur); buf.alloc(4096); long readSize = 0; while ((readSize = io_->read(buf.pData_, buf.size_))) { if (outIo.write(buf.pData_, readSize) != readSize) throw Error(kerImageWriteFailed); } if (outIo.error()) throw Error(kerImageWriteFailed); } // JpegBase::doWriteMetadata const byte JpegImage::soi_ = 0xd8; const byte JpegImage::blank_[] = { 0xFF,0xD8,0xFF,0xDB,0x00,0x84,0x00,0x10,0x0B,0x0B,0x0B,0x0C,0x0B,0x10,0x0C,0x0C, 0x10,0x17,0x0F,0x0D,0x0F,0x17,0x1B,0x14,0x10,0x10,0x14,0x1B,0x1F,0x17,0x17,0x17, 0x17,0x17,0x1F,0x1E,0x17,0x1A,0x1A,0x1A,0x1A,0x17,0x1E,0x1E,0x23,0x25,0x27,0x25, 0x23,0x1E,0x2F,0x2F,0x33,0x33,0x2F,0x2F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x01,0x11,0x0F,0x0F,0x11,0x13,0x11,0x15,0x12, 0x12,0x15,0x14,0x11,0x14,0x11,0x14,0x1A,0x14,0x16,0x16,0x14,0x1A,0x26,0x1A,0x1A, 0x1C,0x1A,0x1A,0x26,0x30,0x23,0x1E,0x1E,0x1E,0x1E,0x23,0x30,0x2B,0x2E,0x27,0x27, 0x27,0x2E,0x2B,0x35,0x35,0x30,0x30,0x35,0x35,0x40,0x40,0x3F,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0xFF,0xC0,0x00,0x11,0x08,0x00,0x01,0x00, 0x01,0x03,0x01,0x22,0x00,0x02,0x11,0x01,0x03,0x11,0x01,0xFF,0xC4,0x00,0x4B,0x00, 0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x07,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xDA,0x00,0x0C,0x03,0x01,0x00,0x02, 0x11,0x03,0x11,0x00,0x3F,0x00,0xA0,0x00,0x0F,0xFF,0xD9 }; JpegImage::JpegImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::jpeg, std::move(io), create, blank_, sizeof(blank_)) { } std::string JpegImage::mimeType() const { return "image/jpeg"; } int JpegImage::writeHeader(BasicIo& outIo) const { // Jpeg header byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = soi_; if (outIo.write(tmpBuf, 2) != 2) return 4; if (outIo.error()) return 4; return 0; } bool JpegImage::isThisType(BasicIo& iIo, bool advance) const { return isJpegType(iIo, advance); } Image::UniquePtr newJpegInstance(BasicIo::UniquePtr io, bool create) { Image::UniquePtr image(new JpegImage(std::move(io), create)); if (!image->good()) { image.reset(); } return image; } bool isJpegType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[2]; iIo.read(tmpBuf, 2); if (iIo.error() || iIo.eof()) return false; if (0xff != tmpBuf[0] || JpegImage::soi_ != tmpBuf[1]) { result = false; } if (!advance || !result ) iIo.seek(-2, BasicIo::cur); return result; } const char ExvImage::exiv2Id_[] = "Exiv2"; const byte ExvImage::blank_[] = { 0xff,0x01,'E','x','i','v','2',0xff,0xd9 }; ExvImage::ExvImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::exv, std::move(io), create, blank_, sizeof(blank_)) { } std::string ExvImage::mimeType() const { return "image/x-exv"; } int ExvImage::writeHeader(BasicIo& outIo) const { // Exv header byte tmpBuf[7]; tmpBuf[0] = 0xff; tmpBuf[1] = 0x01; std::memcpy(tmpBuf + 2, exiv2Id_, 5); if (outIo.write(tmpBuf, 7) != 7) return 4; if (outIo.error()) return 4; return 0; } bool ExvImage::isThisType(BasicIo& iIo, bool advance) const { return isExvType(iIo, advance); } Image::UniquePtr newExvInstance(BasicIo::UniquePtr io, bool create) { Image::UniquePtr image; image = Image::UniquePtr(new ExvImage(std::move(io), create)); if (!image->good()) image.reset(); return image; } bool isExvType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[7]; iIo.read(tmpBuf, 7); if (iIo.error() || iIo.eof()) return false; if ( 0xff != tmpBuf[0] || 0x01 != tmpBuf[1] || memcmp(tmpBuf + 2, ExvImage::exiv2Id_, 5) != 0) { result = false; } if (!advance || !result) iIo.seek(-7, BasicIo::cur); return result; } } // namespace Exiv2