// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004-2021 Exiv2 authors * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA. */ #include "crwimage_int.hpp" #include "canonmn_int.hpp" #include "i18n.h" // NLS support. #include "timegm.h" #include "unused.h" #include "error.hpp" #include "enforce.hpp" #include #include // ***************************************************************************** // local declarations namespace { //! Helper class to map Exif orientation values to CRW rotation degrees class RotationMap { public: //! Get the orientation number for a degree value static uint16_t orientation(int32_t degrees); //! Get the degree value for an orientation number static int32_t degrees(uint16_t orientation); private: //! Helper structure for the mapping list struct OmList { uint16_t orientation; //!< Exif orientation value int32_t degrees; //!< CRW Rotation degrees }; // DATA static const OmList omList_[]; }; // class RotationMap } // namespace // ***************************************************************************** // local definitions namespace { //! @cond IGNORE constexpr RotationMap::OmList RotationMap::omList_[] = { { 1, 0 }, { 3, 180 }, { 3, -180 }, { 6, 90 }, { 6, -270 }, { 8, 270 }, { 8, -90 }, }; uint16_t RotationMap::orientation(int32_t degrees) { uint16_t o = 1; for (auto&& om : omList_) { if (om.degrees == degrees) { o = om.orientation; break; } } return o; } int32_t RotationMap::degrees(uint16_t orientation) { int32_t d = 0; for (auto&& om : omList_) { if (om.orientation == orientation) { d = om.degrees; break; } } return d; } //! @endcond } // namespace namespace Exiv2 { namespace Internal { /* Mapping table used to decode and encode CIFF tags to/from Exif tags. Only a subset of the Exif tags can be mapped to known tags found in CRW files and not all CIFF tags in the CRW files have a corresponding Exif tag. Tags which are not mapped in the table below are ignored. When decoding, each CIFF tag/directory pair in the CRW image is looked up in the table and if it has an entry, the corresponding decode function is called (CrwMap::decode). This function may or may not make use of the other parameters in the structure (such as the Exif tag and Ifd id). Encoding is done in a loop over the mapping table (CrwMap::encode). For each entry, the encode function is called, which looks up the (Exif) metadata to encode in the image. This function may or may not make use of the other parameters in the mapping structure. */ const CrwMapping CrwMap::crwMapping_[] = { // CrwTag CrwDir Size ExifTag IfdId decodeFct encodeFct // ------ ------ ---- ------- ----- --------- --------- CrwMapping(0x0805, 0x300a, 0, 0, canonId, decode0x0805, encode0x0805), CrwMapping(0x080a, 0x2807, 0, 0, canonId, decode0x080a, encode0x080a), CrwMapping(0x080b, 0x3004, 0, 0x0007, canonId, decodeBasic, encodeBasic), CrwMapping(0x0810, 0x2807, 0, 0x0009, canonId, decodeBasic, encodeBasic), CrwMapping(0x0815, 0x2804, 0, 0x0006, canonId, decodeBasic, encodeBasic), CrwMapping(0x1029, 0x300b, 0, 0x0002, canonId, decodeBasic, encodeBasic), CrwMapping(0x102a, 0x300b, 0, 0x0004, canonId, decodeArray, encodeArray), CrwMapping(0x102d, 0x300b, 0, 0x0001, canonId, decodeArray, encodeArray), CrwMapping(0x1033, 0x300b, 0, 0x000f, canonId, decodeArray, encodeArray), CrwMapping(0x1038, 0x300b, 0, 0x0012, canonId, decodeArray, encodeArray), CrwMapping(0x10a9, 0x300b, 0, 0x00a9, canonId, decodeBasic, encodeBasic), // Mapped to Exif.Photo.ColorSpace instead (see below) //CrwMapping(0x10b4, 0x300b, 0, 0x00b4, canonId, decodeBasic, encodeBasic), CrwMapping(0x10b4, 0x300b, 0, 0xa001, exifId, decodeBasic, encodeBasic), CrwMapping(0x10b5, 0x300b, 0, 0x00b5, canonId, decodeBasic, encodeBasic), CrwMapping(0x10c0, 0x300b, 0, 0x00c0, canonId, decodeBasic, encodeBasic), CrwMapping(0x10c1, 0x300b, 0, 0x00c1, canonId, decodeBasic, encodeBasic), CrwMapping(0x1807, 0x3002, 0, 0x9206, exifId, decodeBasic, encodeBasic), CrwMapping(0x180b, 0x3004, 0, 0x000c, canonId, decodeBasic, encodeBasic), CrwMapping(0x180e, 0x300a, 0, 0x9003, exifId, decode0x180e, encode0x180e), CrwMapping(0x1810, 0x300a, 0, 0xa002, exifId, decode0x1810, encode0x1810), CrwMapping(0x1817, 0x300a, 4, 0x0008, canonId, decodeBasic, encodeBasic), //CrwMapping(0x1818, 0x3002, 0, 0x9204, exifId, decodeBasic, encodeBasic), CrwMapping(0x183b, 0x300b, 0, 0x0015, canonId, decodeBasic, encodeBasic), CrwMapping(0x2008, 0x0000, 0, 0, ifd1Id, decode0x2008, encode0x2008), }; // CrwMap::crwMapping_[] /* CIFF directory hierarchy root | 300a | +----+----+----+----+ | | | | | 2804 2807 3002 3003 300b | 3004 The array is arranged bottom-up so that starting with a directory at the bottom, the (unique) path to root can be determined in a single loop. */ const CrwSubDir CrwMap::crwSubDir_[] = { // dir, parent { 0x3004, 0x2807 }, { 0x300b, 0x300a }, { 0x3003, 0x300a }, { 0x3002, 0x300a }, { 0x2807, 0x300a }, { 0x2804, 0x300a }, { 0x300a, 0x0000 }, { 0x0000, 0xffff }, }; const char CiffHeader::signature_[] = "HEAPCCDR"; CiffHeader::~CiffHeader() { delete pRootDir_; delete[] pPadding_; } CiffComponent::~CiffComponent() { if (isAllocated_) delete[] pData_; } CiffDirectory::~CiffDirectory() { for (auto&& component : components_) { delete component; } } void CiffComponent::add(UniquePtr component) { doAdd(std::move(component)); } void CiffEntry::doAdd(UniquePtr /*component*/) { throw Error(kerFunctionNotSupported, "CiffEntry::add"); } // CiffEntry::doAdd void CiffDirectory::doAdd(UniquePtr component) { components_.push_back(component.release()); } // CiffDirectory::doAdd void CiffHeader::read(const byte* pData, uint32_t size) { if (size < 14) throw Error(kerNotACrwImage); if (pData[0] == 'I' && pData[0] == pData[1]) { byteOrder_ = littleEndian; } else if (pData[0] == 'M' && pData[0] == pData[1]) { byteOrder_ = bigEndian; } else { throw Error(kerNotACrwImage); } offset_ = getULong(pData + 2, byteOrder_); if (offset_ < 14 || offset_ > size) throw Error(kerNotACrwImage); if (std::memcmp(pData + 6, signature(), 8) != 0) { throw Error(kerNotACrwImage); } delete[] pPadding_; pPadding_ = new byte[offset_ - 14]; padded_ = offset_ - 14; std::memcpy(pPadding_, pData + 14, padded_); pRootDir_ = new CiffDirectory; pRootDir_->readDirectory(pData + offset_, size - offset_, byteOrder_); } // CiffHeader::read void CiffComponent::read(const byte* pData, uint32_t size, uint32_t start, ByteOrder byteOrder) { doRead(pData, size, start, byteOrder); } void CiffComponent::doRead(const byte* pData, uint32_t size, uint32_t start, ByteOrder byteOrder) { // We're going read 10 bytes. Make sure they won't be out-of-bounds. enforce(size >= 10 && start <= size - 10, kerNotACrwImage); tag_ = getUShort(pData + start, byteOrder); DataLocId dl = dataLocation(); assert(dl == directoryData || dl == valueData); if (dl == valueData) { size_ = getULong(pData + start + 2, byteOrder); offset_ = getULong(pData + start + 6, byteOrder); // Make sure that the sub-region does not overlap with the 10 bytes // that we just read. (Otherwise a malicious file could cause an // infinite recursion.) There are two cases two consider because // the sub-region is allowed to be either before or after the 10 // bytes in memory. if (offset_ < start) { // Sub-region is before in memory. enforce(size_ <= start - offset_, kerOffsetOutOfRange); } else { // Sub-region is after in memory. enforce(offset_ >= start + 10, kerOffsetOutOfRange); enforce(offset_ <= size, kerOffsetOutOfRange); enforce(size_ <= size - offset_, kerOffsetOutOfRange); } } if (dl == directoryData) { size_ = 8; offset_ = start + 2; } pData_ = pData + offset_; #ifdef EXIV2_DEBUG_MESSAGES std::cout << " Entry for tag 0x" << std::hex << tagId() << " (0x" << tag() << "), " << std::dec << size_ << " Bytes, Offset is " << offset_ << "\n"; #endif } // CiffComponent::doRead void CiffDirectory::doRead(const byte* pData, uint32_t size, uint32_t start, ByteOrder byteOrder) { CiffComponent::doRead(pData, size, start, byteOrder); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "Reading directory 0x" << std::hex << tag() << "\n"; #endif if (this->offset() + this->size() > size) throw Error(kerOffsetOutOfRange); readDirectory(pData + offset(), this->size(), byteOrder); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "<---- 0x" << std::hex << tag() << "\n"; #endif } // CiffDirectory::doRead void CiffDirectory::readDirectory(const byte* pData, uint32_t size, ByteOrder byteOrder) { if (size < 4) throw Error(kerCorruptedMetadata); uint32_t o = getULong(pData + size - 4, byteOrder); if ( o > size-2 ) throw Error(kerCorruptedMetadata); uint16_t count = getUShort(pData + o, byteOrder); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "Directory at offset " << std::dec << o <<", " << count << " entries \n"; #endif o += 2; if ( static_cast(count) * 10 > size-o ) throw Error(kerCorruptedMetadata); for (uint16_t i = 0; i < count; ++i) { uint16_t tag = getUShort(pData + o, byteOrder); CiffComponent::UniquePtr m; switch (CiffComponent::typeId(tag)) { case directory: m = CiffComponent::UniquePtr(new CiffDirectory); break; default: m = CiffComponent::UniquePtr(new CiffEntry); break; } m->setDir(this->tag()); m->read(pData, size, o, byteOrder); add(std::move(m)); o += 10; } } // CiffDirectory::readDirectory void CiffHeader::decode(Image& image) const { // Nothing to decode from the header itself, just add correct byte order if (pRootDir_) pRootDir_->decode(image, byteOrder_); } // CiffHeader::decode void CiffComponent::decode(Image& image, ByteOrder byteOrder) const { doDecode(image, byteOrder); } void CiffEntry::doDecode(Image& image, ByteOrder byteOrder) const { CrwMap::decode(*this, image, byteOrder); } // CiffEntry::doDecode void CiffDirectory::doDecode(Image& image, ByteOrder byteOrder) const { for (auto&& component : components_) { component->decode(image, byteOrder); } } // CiffDirectory::doDecode void CiffHeader::write(Blob& blob) const { assert( byteOrder_ == littleEndian || byteOrder_ == bigEndian); if (byteOrder_ == littleEndian) { blob.push_back('I'); blob.push_back('I'); } else { blob.push_back('M'); blob.push_back('M'); } uint32_t o = 2; byte buf[4]; ul2Data(buf, offset_, byteOrder_); append(blob, buf, 4); o += 4; append(blob, reinterpret_cast(signature_), 8); o += 8; // Pad as needed if (pPadding_) { assert(padded_ == offset_ - o); append(blob, pPadding_, padded_); } else { for (uint32_t i = o; i < offset_; ++i) { blob.push_back(0); ++o; } } if (pRootDir_) { pRootDir_->write(blob, byteOrder_, offset_); } } uint32_t CiffComponent::write(Blob& blob, ByteOrder byteOrder, uint32_t offset) { return doWrite(blob, byteOrder, offset); } uint32_t CiffEntry::doWrite(Blob& blob, ByteOrder /*byteOrder*/, uint32_t offset) { return writeValueData(blob, offset); } // CiffEntry::doWrite uint32_t CiffComponent::writeValueData(Blob& blob, uint32_t offset) { if (dataLocation() == valueData) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << " Data for tag 0x" << std::hex << tagId() << ", " << std::dec << size_ << " Bytes\n"; #endif offset_ = offset; append(blob, pData_, size_); offset += size_; // Pad the value to an even number of bytes if (size_ % 2 == 1) { blob.push_back(0); ++offset; } } return offset; } // CiffComponent::writeValueData uint32_t CiffDirectory::doWrite(Blob& blob, ByteOrder byteOrder, uint32_t offset) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << "Writing directory 0x" << std::hex << tag() << "---->\n"; #endif // Ciff offsets are relative to the start of the directory uint32_t dirOffset = 0; // Value data for (auto&& component : components_) { dirOffset = component->write(blob, byteOrder, dirOffset); } const uint32_t dirStart = dirOffset; // Number of directory entries byte buf[4]; us2Data(buf, static_cast(components_.size()), byteOrder); append(blob, buf, 2); dirOffset += 2; // Directory entries for (auto&& component : components_) { component->writeDirEntry(blob, byteOrder); dirOffset += 10; } // Offset of directory ul2Data(buf, dirStart, byteOrder); append(blob, buf, 4); dirOffset += 4; // Update directory entry setOffset(offset); setSize(dirOffset); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "Directory is at offset " << std::dec << dirStart << ", " << components_.size() << " entries\n" << "<---- 0x" << std::hex << tag() << "\n"; #endif return offset + dirOffset; } // CiffDirectory::doWrite void CiffComponent::writeDirEntry(Blob& blob, ByteOrder byteOrder) const { #ifdef EXIV2_DEBUG_MESSAGES std::cout << " Directory entry for tag 0x" << std::hex << tagId() << " (0x" << tag() << "), " << std::dec << size_ << " Bytes, Offset is " << offset_ << "\n"; #endif byte buf[4]; DataLocId dl = dataLocation(); assert(dl == directoryData || dl == valueData); if (dl == valueData) { us2Data(buf, tag_, byteOrder); append(blob, buf, 2); ul2Data(buf, size_, byteOrder); append(blob, buf, 4); ul2Data(buf, offset_, byteOrder); append(blob, buf, 4); } if (dl == directoryData) { // Only 8 bytes fit in the directory entry assert(size_ <= 8); us2Data(buf, tag_, byteOrder); append(blob, buf, 2); // Copy value instead of size and offset append(blob, pData_, size_); // Pad with 0s for (uint32_t i = size_; i < 8; ++i) { blob.push_back(0); } } } // CiffComponent::writeDirEntry void CiffHeader::print(std::ostream& os, const std::string& prefix) const { std::ios::fmtflags f( os.flags() ); os << prefix << _("Header, offset") << " = 0x" << std::setw(8) << std::setfill('0') << std::hex << std::right << offset_ << "\n"; if (pRootDir_) pRootDir_->print(os, byteOrder_, prefix); os.flags(f); } // CiffHeader::print void CiffComponent::print(std::ostream& os, ByteOrder byteOrder, const std::string& prefix) const { doPrint(os, byteOrder, prefix); } void CiffComponent::doPrint(std::ostream& os, ByteOrder byteOrder, const std::string& prefix) const { os << prefix << _("tag") << " = 0x" << std::setw(4) << std::setfill('0') << std::hex << std::right << tagId() << ", " << _("dir") << " = 0x" << std::setw(4) << std::setfill('0') << std::hex << std::right << dir() << ", " << _("type") << " = " << TypeInfo::typeName(typeId()) << ", " << _("size") << " = " << std::dec << size_ << ", " << _("offset") << " = " << offset_ << "\n"; Value::UniquePtr value; if (typeId() != directory) { value = Value::create(typeId()); value->read(pData_, size_, byteOrder); if (value->size() < 100) { os << prefix << *value << "\n"; } } } // CiffComponent::doPrint void CiffDirectory::doPrint(std::ostream& os, ByteOrder byteOrder, const std::string& prefix) const { CiffComponent::doPrint(os, byteOrder, prefix); for (auto&& component : components_) { component->print(os, byteOrder, prefix + " "); } } // CiffDirectory::doPrint void CiffComponent::setValue(DataBuf buf) { if (isAllocated_) { delete[] pData_; pData_ = nullptr; size_ = 0; } isAllocated_ = true; std::pair p = buf.release(); pData_ = p.first; size_ = p.second; if (size_ > 8 && dataLocation() == directoryData) { tag_ &= 0x3fff; } } // CiffComponent::setValue TypeId CiffComponent::typeId(uint16_t tag) { TypeId ti = invalidTypeId; switch (tag & 0x3800) { case 0x0000: ti = unsignedByte; break; case 0x0800: ti = asciiString; break; case 0x1000: ti = unsignedShort; break; case 0x1800: ti = unsignedLong; break; case 0x2000: ti = undefined; break; case 0x2800: // fallthrough case 0x3000: ti = directory; break; } return ti; } // CiffComponent::typeId DataLocId CiffComponent::dataLocation(uint16_t tag) { switch (tag & 0xc000) { case 0x0000: return valueData; case 0x4000: return directoryData; default: throw Error(kerCorruptedMetadata); } } // CiffComponent::dataLocation /*! @brief Finds \em crwTagId in directory \em crwDir, returning a pointer to the component or 0 if not found. */ CiffComponent* CiffHeader::findComponent(uint16_t crwTagId, uint16_t crwDir) const { if (pRootDir_ == nullptr) return nullptr; return pRootDir_->findComponent(crwTagId, crwDir); } // CiffHeader::findComponent CiffComponent* CiffComponent::findComponent(uint16_t crwTagId, uint16_t crwDir) const { return doFindComponent(crwTagId, crwDir); } // CiffComponent::findComponent CiffComponent* CiffComponent::doFindComponent(uint16_t crwTagId, uint16_t crwDir) const { if (tagId() == crwTagId && dir() == crwDir) { return const_cast(this); } return nullptr; } // CiffComponent::doFindComponent CiffComponent* CiffDirectory::doFindComponent(uint16_t crwTagId, uint16_t crwDir) const { CiffComponent* cc; for (auto&& component : components_) { cc = component->findComponent(crwTagId, crwDir); if (cc) return cc; } return nullptr; } // CiffDirectory::doFindComponent void CiffHeader::add(uint16_t crwTagId, uint16_t crwDir, DataBuf buf) { CrwDirs crwDirs; CrwMap::loadStack(crwDirs, crwDir); uint16_t rootDirectory = crwDirs.top().crwDir_; UNUSED(rootDirectory); assert(rootDirectory == 0x0000); crwDirs.pop(); if (!pRootDir_) pRootDir_ = new CiffDirectory; if ( pRootDir_) { CiffComponent* child = pRootDir_->add(crwDirs, crwTagId); if ( child ) child->setValue(buf); } } // CiffHeader::add CiffComponent* CiffComponent::add(CrwDirs& crwDirs, uint16_t crwTagId) { return doAdd(crwDirs, crwTagId); } // CiffComponent::add CiffComponent* CiffComponent::doAdd(CrwDirs& /*crwDirs*/, uint16_t /*crwTagId*/) { return nullptr; } // CiffComponent::doAdd CiffComponent* CiffDirectory::doAdd(CrwDirs& crwDirs, uint16_t crwTagId) { /* add() if stack not empty pop from stack find dir among components if not found, create it add() else find tag among components if not found, create it set value */ if (!crwDirs.empty()) { CrwSubDir csd = crwDirs.top(); crwDirs.pop(); // Find the directory for (auto&& component : components_) { if (component->tag() == csd.crwDir_) { cc_ = component; break; } } if (cc_ == nullptr) { // Directory doesn't exist yet, add it m_ = UniquePtr(new CiffDirectory(csd.crwDir_, csd.parent_)); cc_ = m_.get(); add(std::move(m_)); } // Recursive call to next lower level directory cc_ = cc_->add(crwDirs, crwTagId); } else { // Find the tag for (auto&& component : components_) { if (component->tagId() == crwTagId) { cc_ = component; break; } } if (cc_ == nullptr) { // Tag doesn't exist yet, add it m_ = UniquePtr(new CiffEntry(crwTagId, tag())); cc_ = m_.get(); add(std::move(m_)); } } return cc_; } // CiffDirectory::doAdd void CiffHeader::remove(uint16_t crwTagId, uint16_t crwDir) { if (pRootDir_) { CrwDirs crwDirs; CrwMap::loadStack(crwDirs, crwDir); uint16_t rootDirectory = crwDirs.top().crwDir_; UNUSED(rootDirectory); assert(rootDirectory == 0x0000); crwDirs.pop(); pRootDir_->remove(crwDirs, crwTagId); } } // CiffHeader::remove void CiffComponent::remove(CrwDirs& crwDirs, uint16_t crwTagId) { return doRemove(crwDirs, crwTagId); } // CiffComponent::remove void CiffComponent::doRemove(CrwDirs& /*crwDirs*/, uint16_t /*crwTagId*/) { // do nothing } // CiffComponent::doRemove void CiffDirectory::doRemove(CrwDirs& crwDirs, uint16_t crwTagId) { const Components::iterator b = components_.begin(); const Components::iterator e = components_.end(); Components::iterator i; if (!crwDirs.empty()) { CrwSubDir csd = crwDirs.top(); crwDirs.pop(); // Find the directory for (i = b; i != e; ++i) { if ((*i)->tag() == csd.crwDir_) { // Recursive call to next lower level directory (*i)->remove(crwDirs, crwTagId); if ((*i)->empty()) components_.erase(i); break; } } } else { // Find the tag for (i = b; i != e; ++i) { if ((*i)->tagId() == crwTagId) { // Remove the entry and abort the loop delete *i; components_.erase(i); break; } } } } // CiffDirectory::doRemove bool CiffComponent::empty() const { return doEmpty(); } bool CiffComponent::doEmpty() const { return size_ == 0; } bool CiffDirectory::doEmpty() const { return components_.empty(); } void CrwMap::decode(const CiffComponent& ciffComponent, Image& image, ByteOrder byteOrder) { const CrwMapping* cmi = crwMapping(ciffComponent.dir(), ciffComponent.tagId()); if (cmi && cmi->toExif_) { cmi->toExif_(ciffComponent, cmi, image, byteOrder); } } // CrwMap::decode const CrwMapping* CrwMap::crwMapping(uint16_t crwDir, uint16_t crwTagId) { for (auto&& crw : crwMapping_) { if (crw.crwDir_ == crwDir && crw.crwTagId_ == crwTagId) { return &crw; } } return nullptr; } // CrwMap::crwMapping void CrwMap::decode0x0805(const CiffComponent& ciffComponent, const CrwMapping* /*pCrwMapping*/, Image& image, ByteOrder /*byteOrder*/) { std::string s(reinterpret_cast(ciffComponent.pData())); image.setComment(s); } // CrwMap::decode0x0805 void CrwMap::decode0x080a(const CiffComponent& ciffComponent, const CrwMapping* /*pCrwMapping*/, Image& image, ByteOrder byteOrder) { if (ciffComponent.typeId() != asciiString) return; // Make ExifKey key1("Exif.Image.Make"); Value::UniquePtr value1 = Value::create(ciffComponent.typeId()); uint32_t i = 0; for (; i < ciffComponent.size() && ciffComponent.pData()[i] != '\0'; ++i) { // empty } value1->read(ciffComponent.pData(), ++i, byteOrder); image.exifData().add(key1, value1.get()); // Model ExifKey key2("Exif.Image.Model"); Value::UniquePtr value2 = Value::create(ciffComponent.typeId()); uint32_t j = i; for (; i < ciffComponent.size() && ciffComponent.pData()[i] != '\0'; ++i) { // empty } value2->read(ciffComponent.pData() + j, i - j + 1, byteOrder); image.exifData().add(key2, value2.get()); } // CrwMap::decode0x080a void CrwMap::decodeArray(const CiffComponent& ciffComponent, const CrwMapping* pCrwMapping, Image& image, ByteOrder byteOrder) { if (ciffComponent.typeId() != unsignedShort) { return decodeBasic(ciffComponent, pCrwMapping, image, byteOrder); } long aperture = 0; long shutterSpeed = 0; IfdId ifdId = ifdIdNotSet; switch (pCrwMapping->tag_) { case 0x0001: ifdId = canonCsId; break; case 0x0004: ifdId = canonSiId; break; case 0x000f: ifdId = canonCfId; break; case 0x0012: ifdId = canonPiId; break; } assert(ifdId != ifdIdNotSet); std::string groupName(Internal::groupName(ifdId)); uint16_t c = 1; while (uint32_t(c)*2 < ciffComponent.size()) { uint16_t n = 1; ExifKey key(c, groupName); UShortValue value; if (ifdId == canonCsId && c == 23 && ciffComponent.size() > 50) n = 3; value.read(ciffComponent.pData() + c*2, n*2, byteOrder); image.exifData().add(key, &value); if (ifdId == canonSiId && c == 21) aperture = value.toLong(); if (ifdId == canonSiId && c == 22) shutterSpeed = value.toLong(); c += n; } if (ifdId == canonSiId) { // Exif.Photo.FNumber float f = fnumber(canonEv(aperture)); Rational r = floatToRationalCast(f); URational ur(r.first, r.second); URationalValue fn; fn.value_.push_back(ur); image.exifData().add(ExifKey("Exif.Photo.FNumber"), &fn); // Exif.Photo.ExposureTime ur = exposureTime(canonEv(shutterSpeed)); URationalValue et; et.value_.push_back(ur); image.exifData().add(ExifKey("Exif.Photo.ExposureTime"), &et); } } // CrwMap::decodeArray void CrwMap::decode0x180e(const CiffComponent& ciffComponent, const CrwMapping* pCrwMapping, Image& image, ByteOrder byteOrder) { if (ciffComponent.size() < 8 || ciffComponent.typeId() != unsignedLong) { return decodeBasic(ciffComponent, pCrwMapping, image, byteOrder); } assert(pCrwMapping != 0); ULongValue v; v.read(ciffComponent.pData(), 8, byteOrder); time_t t = v.value_[0]; struct tm* tm = std::localtime(&t); if (tm) { const size_t m = 20; char s[m]; std::strftime(s, m, "%Y:%m:%d %H:%M:%S", tm); ExifKey key(pCrwMapping->tag_, Internal::groupName(pCrwMapping->ifdId_)); AsciiValue value; value.read(std::string(s)); image.exifData().add(key, &value); } } // CrwMap::decode0x180e void CrwMap::decode0x1810(const CiffComponent& ciffComponent, const CrwMapping* pCrwMapping, Image& image, ByteOrder byteOrder) { if (ciffComponent.typeId() != unsignedLong || ciffComponent.size() < 28) { return decodeBasic(ciffComponent, pCrwMapping, image, byteOrder); } ExifKey key1("Exif.Photo.PixelXDimension"); ULongValue value1; value1.read(ciffComponent.pData(), 4, byteOrder); image.exifData().add(key1, &value1); ExifKey key2("Exif.Photo.PixelYDimension"); ULongValue value2; value2.read(ciffComponent.pData() + 4, 4, byteOrder); image.exifData().add(key2, &value2); int32_t r = getLong(ciffComponent.pData() + 12, byteOrder); uint16_t o = RotationMap::orientation(r); image.exifData()["Exif.Image.Orientation"] = o; } // CrwMap::decode0x1810 void CrwMap::decode0x2008(const CiffComponent& ciffComponent, const CrwMapping* /*pCrwMapping*/, Image& image, ByteOrder /*byteOrder*/) { ExifThumb exifThumb(image.exifData()); exifThumb.setJpegThumbnail(ciffComponent.pData(), ciffComponent.size()); } // CrwMap::decode0x2008 void CrwMap::decodeBasic(const CiffComponent& ciffComponent, const CrwMapping* pCrwMapping, Image& image, ByteOrder byteOrder) { assert(pCrwMapping != 0); // create a key and value pair ExifKey key(pCrwMapping->tag_, Internal::groupName(pCrwMapping->ifdId_)); Value::UniquePtr value; if (ciffComponent.typeId() != directory) { value = Value::create(ciffComponent.typeId()); uint32_t size = 0; if (pCrwMapping->size_ != 0) { // size in the mapping table overrides all size = pCrwMapping->size_; } else if (ciffComponent.typeId() == asciiString) { // determine size from the data, by looking for the first 0 uint32_t i = 0; for (; i < ciffComponent.size() && ciffComponent.pData()[i] != '\0'; ++i) { // empty } size = ++i; } else { // by default, use the size from the directory entry size = ciffComponent.size(); } value->read(ciffComponent.pData(), size, byteOrder); } // Add metadatum to exif data image.exifData().add(key, value.get()); } // CrwMap::decodeBasic void CrwMap::loadStack(CrwDirs& crwDirs, uint16_t crwDir) { for (auto&& crw : crwSubDir_) { if (crw.crwDir_ == crwDir) { crwDirs.push(crw); crwDir = crw.parent_; } } } // CrwMap::loadStack void CrwMap::encode(CiffHeader* pHead, const Image& image) { for (auto&& crw : crwMapping_) { if (crw.fromExif_ != nullptr) { crw.fromExif_(image, &crw, pHead); } } } // CrwMap::encode void CrwMap::encodeBasic(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); // Determine the source Exif metadatum ExifKey ek(pCrwMapping->tag_, Internal::groupName(pCrwMapping->ifdId_)); auto ed = image.exifData().findKey(ek); // Set the new value or remove the entry if (ed != image.exifData().end()) { DataBuf buf(ed->size()); ed->copy(buf.pData_, pHead->byteOrder()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encodeBasic void CrwMap::encode0x0805(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); std::string comment = image.comment(); CiffComponent* cc = pHead->findComponent(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); if (!comment.empty()) { auto size = static_cast(comment.size()); if (cc && cc->size() > size) size = cc->size(); DataBuf buf(size); std::memset(buf.pData_, 0x0, buf.size_); std::memcpy(buf.pData_, comment.data(), comment.size()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { if (cc) { // Just delete the value, do not remove the tag DataBuf buf(cc->size()); std::memset(buf.pData_, 0x0, buf.size_); cc->setValue(buf); } } } // CrwMap::encode0x0805 void CrwMap::encode0x080a(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); const ExifKey k1("Exif.Image.Make"); const ExifKey k2("Exif.Image.Model"); const auto ed1 = image.exifData().findKey(k1); const auto ed2 = image.exifData().findKey(k2); const auto edEnd = image.exifData().end(); long size = 0; if (ed1 != edEnd) size += ed1->size(); if (ed2 != edEnd) size += ed2->size(); if (size != 0) { DataBuf buf(size); if (ed1 != edEnd) ed1->copy(buf.pData_, pHead->byteOrder()); if (ed2 != edEnd) ed2->copy(buf.pData_ + ed1->size(), pHead->byteOrder()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encode0x080a void CrwMap::encodeArray(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); IfdId ifdId = ifdIdNotSet; switch (pCrwMapping->tag_) { case 0x0001: ifdId = canonCsId; break; case 0x0004: ifdId = canonSiId; break; case 0x000f: ifdId = canonCfId; break; case 0x0012: ifdId = canonPiId; break; } assert(ifdId != ifdIdNotSet); DataBuf buf = packIfdId(image.exifData(), ifdId, pHead->byteOrder()); if (buf.size_ == 0) { // Try the undecoded tag encodeBasic(image, pCrwMapping, pHead); } if (buf.size_ > 0) { // Write the number of shorts to the beginning of buf us2Data(buf.pData_, static_cast(buf.size_), pHead->byteOrder()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encodeArray void CrwMap::encode0x180e(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); time_t t = 0; const ExifKey key(pCrwMapping->tag_, Internal::groupName(pCrwMapping->ifdId_)); const auto ed = image.exifData().findKey(key); if (ed != image.exifData().end()) { struct tm tm; std::memset(&tm, 0x0, sizeof(tm)); if ( exifTime(ed->toString().c_str(), &tm) == 0 ) { t=::mktime(&tm); } } if (t != 0) { DataBuf buf(12); std::memset(buf.pData_, 0x0, 12); ul2Data(buf.pData_, static_cast(t), pHead->byteOrder()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encode0x180e void CrwMap::encode0x1810(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); const ExifKey kX("Exif.Photo.PixelXDimension"); const ExifKey kY("Exif.Photo.PixelYDimension"); const ExifKey kO("Exif.Image.Orientation"); const ExifData &exivData = image.exifData(); const auto edX = exivData.findKey(kX); const auto edY = exivData.findKey(kY); const auto edO = exivData.findKey(kO); const auto edEnd = exivData.end(); CiffComponent* cc = pHead->findComponent(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); if (edX != edEnd || edY != edEnd || edO != edEnd) { uint32_t size = 28; if (cc) { if (cc->size() < size) throw Error(kerCorruptedMetadata); size = cc->size(); } DataBuf buf(size); std::memset(buf.pData_, 0x0, buf.size_); if (cc) std::memcpy(buf.pData_ + 8, cc->pData() + 8, cc->size() - 8); if (edX != edEnd && edX->size() == 4) { edX->copy(buf.pData_, pHead->byteOrder()); } if (edY != edEnd && edY->size() == 4) { edY->copy(buf.pData_ + 4, pHead->byteOrder()); } int32_t d = 0; if (edO != edEnd && edO->count() > 0 && edO->typeId() == unsignedShort) { d = RotationMap::degrees(static_cast(edO->toLong())); } l2Data(buf.pData_ + 12, d, pHead->byteOrder()); pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encode0x1810 void CrwMap::encode0x2008(const Image& image, const CrwMapping* pCrwMapping, CiffHeader* pHead) { assert(pCrwMapping != 0); assert(pHead != 0); ExifThumbC exifThumb(image.exifData()); DataBuf buf = exifThumb.copy(); if (buf.size_ != 0) { pHead->add(pCrwMapping->crwTagId_, pCrwMapping->crwDir_, buf); } else { pHead->remove(pCrwMapping->crwTagId_, pCrwMapping->crwDir_); } } // CrwMap::encode0x2008 // ************************************************************************* // free functions DataBuf packIfdId(const ExifData& exifData, IfdId ifdId, ByteOrder byteOrder) { const uint16_t size = 1024; DataBuf buf(size); std::memset(buf.pData_, 0x0, buf.size_); uint16_t len = 0; for (auto&& exif : exifData) { if (exif.ifdId() != ifdId) continue; const uint16_t s = exif.tag() * 2 + static_cast(exif.size()); assert(s <= size); if (len < s) len = s; exif.copy(buf.pData_ + exif.tag() * 2, byteOrder); } // Round the size to make it even. buf.size_ = len + len%2; return buf; } } // namespace Internal } // namespace Exiv2