// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004 Andreas Huggel * * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* File: actions.cpp Version: $Name: $ $Revision: 1.22 $ Author(s): Andreas Huggel (ahu) History: 08-Dec-03, ahu: created */ // ***************************************************************************** #include "rcsid.hpp" EXIV2_RCSID("@(#) $Name: $ $Revision: 1.22 $ $RCSfile: actions.cpp,v $") // ***************************************************************************** // included header files #include "actions.hpp" #include "exiv2.hpp" #include "utils.hpp" #include "types.hpp" #include "exif.hpp" #include "canonmn.hpp" // + standard includes #include #include #include #include #include #include #include #include #include #include // for stat() #include // for stat() #include // for stat() // ***************************************************************************** // local declarations namespace { // Convert a string "YYYY:MM:DD HH:MI:SS" to a struct tm type, // returns 0 if successful int str2Tm(const std::string& timeStr, struct tm* tm); // Convert a string "YYYY:MM:DD HH:MI:SS" to a time type, -1 on error time_t str2Time(const std::string& timeStr); // Convert a time type to a string "YYYY:MM:DD HH:MI:SS", "" on error std::string time2Str(time_t time); // Return an error message for the return code of Exiv2::ExifData::read std::string exifReadError(int rc, const std::string& path); // Return an error message for the return code of Exiv2::ExifData::write std::string exifWriteError(int rc, const std::string& path); } // ***************************************************************************** // class member definitions namespace Action { Task::AutoPtr Task::clone() const { return AutoPtr(clone_()); } TaskFactory* TaskFactory::instance_ = 0; TaskFactory& TaskFactory::instance() { if (0 == instance_) { instance_ = new TaskFactory; } return *instance_; } // TaskFactory::instance void TaskFactory::registerTask(TaskType type, Task::AutoPtr task) { Registry::iterator i = registry_.find(type); if (i != registry_.end()) { delete i->second; } registry_[type] = task.release(); } // TaskFactory::registerTask TaskFactory::TaskFactory() { // Register a prototype of each known task registerTask(adjust, Task::AutoPtr(new Adjust)); registerTask(print, Task::AutoPtr(new Print)); registerTask(rename, Task::AutoPtr(new Rename)); registerTask(erase, Task::AutoPtr(new Erase)); registerTask(extract, Task::AutoPtr(new Extract)); registerTask(insert, Task::AutoPtr(new Insert)); } // TaskFactory c'tor Task::AutoPtr TaskFactory::create(TaskType type) { Registry::const_iterator i = registry_.find(type); if (i != registry_.end() && i->second != 0) { Task* t = i->second; return t->clone(); } return Task::AutoPtr(0); } // TaskFactory::create int Print::run(const std::string& path) try { path_ = path; Exiv2::ExifData exifData; int rc = exifData.read(path); if (rc) { std::cerr << exifReadError(rc, path) << "\n"; return rc; } switch (Params::instance().printMode_) { case Params::summary: printSummary(exifData); break; case Params::interpreted: printInterpreted(exifData); break; case Params::values: printValues(exifData); break; case Params::hexdump: printHexdump(exifData); break; } return 0; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in print action for file " << path << ":\n" << e << "\n"; return 1; } // Print::run void Print::printSummary(const Exiv2::ExifData& exifData) { align_ = 16; // Filename std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Filename" << ": " << path_ << "\n"; // Filesize struct stat buf; if (0 == stat(path_.c_str(), &buf)) { std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Filesize" << ": " << buf.st_size << " Bytes\n"; } // Camera make printTag(exifData, "Image.OtherTags.Make", "Camera make"); // Camera model printTag(exifData, "Image.OtherTags.Model", "Camera model"); // Image Timestamp printTag(exifData, "Image.DateTime.DateTimeOriginal", "Image timestamp"); // Image number // Todo: Image number for cameras other than Canon printTag(exifData, "Makernote.Canon.ImageNumber", "Image number"); // Exposure time // From ExposureTime, failing that, try ShutterSpeedValue std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Exposure time" << ": "; Exiv2::ExifData::const_iterator md; if (0 == printTag(exifData, "Image.CaptureConditions.ExposureTime")) { md = exifData.findKey("Image.CaptureConditions.ShutterSpeedValue"); if (md != exifData.end()) { float f = exp2f(md->toFloat()) + 0.5; if (f > 1) { std::cout << "1/" << static_cast(f) << " s"; } else { std::cout << static_cast(1/f) << " s"; } } } std::cout << "\n"; // Aperture // Get if from FNumber and, failing that, try ApertureValue std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Aperture" << ": "; if (0 == printTag(exifData, "Image.CaptureConditions.FNumber")) { md = exifData.findKey("Image.CaptureConditions.ApertureValue"); if (md != exifData.end()) { std::cout << std::fixed << std::setprecision(1) << "F" << exp2f(md->toFloat()/2); } } std::cout << "\n"; // Exposure bias printTag(exifData, "Image.CaptureConditions.ExposureBiasValue", "Exposure bias"); // Flash printTag(exifData, "Image.CaptureConditions.Flash", "Flash"); // Todo: Flash bias, flash energy // Todo: Implement this for other cameras std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Flash bias" << ": "; md = exifData.findKey("Makernote.Canon.CameraSettings2"); if (md != exifData.end() && md->count() >= 15) { Exiv2::CanonMakerNote::print0x0004_15(std::cout, md->toLong(15)); } std::cout << "\n"; // Actual focal length and 35 mm equivalent // Todo: Calculate 35 mm equivalent a la jhead std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Focal length" << ": "; if (1 == printTag(exifData, "Image.CaptureConditions.FocalLength")) { md = exifData.findKey("Image.CaptureConditions.FocalLengthIn35mmFilm"); if (md != exifData.end()) { std::cout << " (35 mm equivalent: " << *md << ")"; } } std::cout << "\n"; // Subject distance std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Subject distance" << ": "; if (0 == printTag(exifData, "Image.CaptureConditions.SubjectDistance")) { md = exifData.findKey("Makernote.Canon.CameraSettings2"); if (md != exifData.end() && md->count() >= 19) { Exiv2::CanonMakerNote::print0x0004_19(std::cout, md->toLong(19)); } } std::cout << "\n"; // ISO speed // from ISOSpeedRatings or Canon Makernote std::cout << std::setw(align_) << std::setfill(' ') << std::left << "ISO speed" << ": "; if (0 == printTag(exifData, "Image.CaptureConditions.ISOSpeedRatings")) { md = exifData.findKey("Makernote.Canon.CameraSettings1"); if (md != exifData.end() && md->count() >= 16) { Exiv2::CanonMakerNote::print0x0001_16(std::cout, md->toLong(16)); } } std::cout << "\n"; // Exposure mode // From ExposureProgram or Canon Makernote std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Exposure mode" << ": "; if (0 == printTag(exifData, "Image.CaptureConditions.ExposureProgram")) { md = exifData.findKey("Makernote.Canon.CameraSettings1"); if (md != exifData.end() && md->count() >= 20) { Exiv2::CanonMakerNote::print0x0001_20(std::cout, md->toLong(20)); } } std::cout << "\n"; // Metering mode printTag(exifData, "Image.CaptureConditions.MeteringMode", "Metering mode"); // Macro mode // Todo: Implement this for other cameras std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Macro mode" << ": "; bool done = false; md = exifData.findKey("Makernote.Canon.CameraSettings1"); if (md != exifData.end() && md->count() >= 1) { Exiv2::CanonMakerNote::print0x0001_01(std::cout, md->toLong(1)); done = true; } if (!done) { done = printTag(exifData, "Makernote.Fujifilm.Macro"); } std::cout << "\n"; // Image quality setting (compression) // Todo: Implement this for other cameras std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Image quality" << ": "; done = false; md = exifData.findKey("Makernote.Canon.CameraSettings1"); if (md != exifData.end() && md->count() >= 3) { Exiv2::CanonMakerNote::print0x0001_03(std::cout, md->toLong(3)); done = true; } if (!done) { done = printTag(exifData, "Makernote.Fujifilm.Quality"); } if (!done) { done = printTag(exifData, "Makernote.Sigma.Quality"); } std::cout << "\n"; // Exif Resolution std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Exif Resolution" << ": "; long xdim = 0; long ydim = 0; md = exifData.findKey("Image.ImageConfig.PixelXDimension"); if (md != exifData.end()) xdim = md->toLong(); md = exifData.findKey("Image.ImageConfig.PixelYDimension"); if (md != exifData.end()) ydim = md->toLong(); if (xdim != 0 && ydim != 0) { std::cout << xdim << " x " << ydim; } std::cout << "\n"; // White balance // Todo: Implement this for other cameras std::cout << std::setw(align_) << std::setfill(' ') << std::left << "White balance" << ": "; done = false; md = exifData.findKey("Makernote.Canon.CameraSettings2"); if (md != exifData.end() && md->count() >= 7) { Exiv2::CanonMakerNote::print0x0004_07(std::cout, md->toLong(7)); done = true; } if (!done) { done = printTag(exifData, "Makernote.Fujifilm.WhiteBalance"); } if (!done) { done = printTag(exifData, "Makernote.Sigma.WhiteBalance"); } std::cout << "\n"; // Thumbnail std::cout << std::setw(align_) << std::setfill(' ') << std::left << "Thumbnail" << ": "; std::string thumbExt = exifData.thumbnailExtension(); if (thumbExt.empty()) { std::cout << "None"; } else { std::cout << exifData.thumbnailFormat() << ", " << exifData.thumbnailSize() << " Bytes"; } std::cout << "\n"; // Copyright printTag(exifData, "Image.OtherTags.Copyright", "Copyright"); // Exif Comment printTag(exifData, "Image.UserInfo.UserComment", "Exif comment"); std::cout << std::endl; } // Print::printSummary int Print::printTag(const Exiv2::ExifData& exifData, const std::string& key, const std::string& label) const { int rc = 0; if (!label.empty()) { // Print the label in any case for the moment (to see what's missing) std::cout << std::setw(align_) << std::setfill(' ') << std::left << label << ": "; } Exiv2::ExifData::const_iterator md = exifData.findKey(key); if (md != exifData.end()) { std::cout << *md; rc = 1; } if (!label.empty()) std::cout << "\n"; return rc; } // Print::printTag void Print::printInterpreted(const Exiv2::ExifData& exifData) { Exiv2::ExifData::const_iterator md; for (md = exifData.begin(); md != exifData.end(); ++md) { std::cout << "0x" << std::setw(4) << std::setfill('0') << std::right << std::hex << md->tag() << " " << std::setw(9) << std::setfill(' ') << std::left << md->ifdItem() << " " << std::setw(27) << std::setfill(' ') << std::left << md->tagName() << " " << std::dec << *md << "\n"; } } // Print::printInterpreted void Print::printValues(const Exiv2::ExifData& exifData) { Exiv2::ExifData::const_iterator md; for (md = exifData.begin(); md != exifData.end(); ++md) { std::cout << "0x" << std::setw(4) << std::setfill('0') << std::right << std::hex << md->tag() << " " << std::setw(9) << std::setfill(' ') << std::left << md->ifdName() << " " << std::setw(9) << std::setfill(' ') << std::left << md->typeName() << " " << std::dec << std::setw(3) << std::setfill(' ') << std::right << md->count() << " " << std::setw(27) << std::setfill(' ') << std::left << md->tagName() << " " << std::dec << md->value() << "\n"; } } // Print::printValues void Print::printHexdump(const Exiv2::ExifData& exifData) { Exiv2::ExifData::const_iterator md; for (md = exifData.begin(); md != exifData.end(); ++md) { std::cout << std::setw(4) << std::setfill(' ') << std::left << md->ifdName() << " " << "0x" << std::setw(4) << std::setfill('0') << std::right << std::hex << md->tag() << " " << std::setw(9) << std::setfill(' ') << std::left << md->typeName() << " " << std::dec << std::setw(3) << std::setfill(' ') << std::right << md->count() << " " << std::dec << std::setw(3) << std::setfill(' ') << std::right << md->size() << " " << std::setw(27) << std::setfill(' ') << std::left << md->tagName() << "\n"; Exiv2::DataBuf buf(md->size()); md->copy(buf.pData_, exifData.byteOrder()); Exiv2::hexdump(std::cout, buf.pData_, buf.size_); } } // Print::printHexdump Print::AutoPtr Print::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Print::clone_() const { return new Print(*this); } int Rename::run(const std::string& path) try { Exiv2::ExifData exifData; int rc = exifData.read(path); if (rc) { std::cerr << exifReadError(rc, path) << "\n"; return rc; } std::string key = "Image.DateTime.DateTimeOriginal"; Exiv2::ExifData::iterator md = exifData.findKey(key); if (md == exifData.end()) { std::cerr << "Metadatum with key `" << key << "' " << "not found in the file " << path << "\n"; return 1; } std::string v = md->toString(); if (v.length() == 0 || v[0] == ' ') { std::cerr << "Image file creation timestamp not set in the file " << path << "\n"; return 1; } // Assemble the new filename from the timestamp struct tm tm; if (str2Tm(v, &tm) != 0) { std::cerr << "Failed to parse timestamp `" << v << "' in the file " << path << "\n"; return 1; } const size_t max = 1024; char basename[max]; memset(basename, 0x0, max); if (strftime(basename, max, Params::instance().format_.c_str(), &tm) == 0) { std::cerr << "Filename format yields empty filename for the file " << path << "\n"; return 1; } std::string newPath = Util::dirname(path) + "/" + basename + Util::suffix(path); if ( Util::dirname(newPath) == Util::dirname(path) && Util::basename(newPath) == Util::basename(path)) { if (Params::instance().verbose_) { std::cout << "This file already has the correct name\n"; } return 0; } if (Params::instance().verbose_) { std::cout << "Renaming file to " << newPath << "\n"; } if (!Params::instance().force_ && Util::fileExists(newPath)) { std::cout << Params::instance().progname() << ": Overwrite `" << newPath << "'? "; std::string s; std::cin >> s; if (s[0] != 'y' && s[0] != 'Y') return 0; } // Workaround for MinGW rename which does not overwrite existing files ::remove(newPath.c_str()); if (::rename(path.c_str(), newPath.c_str()) == -1) { std::cerr << Params::instance().progname() << ": Failed to rename " << path << " to " << newPath << ": " << Util::strError() << "\n"; return 1; } return 0; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in rename action for file " << path << ":\n" << e << "\n"; return 1; } // Rename::run Rename::AutoPtr Rename::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Rename::clone_() const { return new Rename(*this); } int Erase::run(const std::string& path) try { path_ = path; Exiv2::ExifData exifData; int rc = exifData.read(path); if (rc) { std::cerr << exifReadError(rc, path) << "\n"; return rc; } switch (Params::instance().delTarget_) { case Params::delExif: rc = eraseExifData(exifData); break; case Params::delThumb: rc = eraseThumbnail(exifData); break; } return rc; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in erase action for file " << path << ":\n" << e << "\n"; return 1; } // Erase::run int Erase::eraseThumbnail(Exiv2::ExifData& exifData) const { int rc = 0; std::string thumbExt = exifData.thumbnailExtension(); if (thumbExt.empty()) { std::cerr << path_ << ": Image does not contain an Exif thumbnail\n"; } else { long delta = exifData.eraseThumbnail(); if (Params::instance().verbose_) { std::cout << "Erasing " << delta << " Bytes of thumbnail data\n"; } rc = exifData.write(path_); if (rc) { std::cerr << exifWriteError(rc, path_) << "\n"; } } return rc; } int Erase::eraseExifData(Exiv2::ExifData& exifData) const { if (Params::instance().verbose_) { std::cout << "Erasing Exif data from the file\n"; } int rc = exifData.erase(path_); if (rc) { std::cerr << exifWriteError(rc, path_) << "\n"; } return rc; } Erase::AutoPtr Erase::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Erase::clone_() const { return new Erase(*this); } int Extract::run(const std::string& path) try { path_ = path; Exiv2::ExifData exifData; int rc = exifData.read(path); if (rc) { std::cerr << exifReadError(rc, path) << "\n"; return rc; } switch (Params::instance().extractTarget_) { case Params::extExif: rc = writeExifData(exifData); break; case Params::extThumb: rc = writeThumbnail(exifData); break; } return rc; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in extract action for file " << path << ":\n" << e << "\n"; return 1; } // Extract::run int Extract::writeExifData(Exiv2::ExifData& exifData) const { std::string exvPath = Util::dirname(path_) + "/" + Util::basename(path_, true) + ".exv"; if (Params::instance().verbose_) { std::cout << "Writing Exif data to " << exvPath << "\n"; } if (!Params::instance().force_ && Util::fileExists(exvPath)) { std::cout << Params::instance().progname() << ": Overwrite `" << exvPath << "'? "; std::string s; std::cin >> s; if (s[0] != 'y' && s[0] != 'Y') return 0; } int rc = exifData.writeExifData(exvPath); if (rc) { std::cerr << exifWriteError(rc, exvPath) << "\n"; } return rc; } int Extract::writeThumbnail(const Exiv2::ExifData& exifData) const { int rc = 0; std::string thumb = Util::dirname(path_) + "/" + Util::basename(path_, true) + "-thumb"; std::string thumbExt = exifData.thumbnailExtension(); if (thumbExt.empty()) { std::cerr << path_ << ": Image does not contain an Exif thumbnail\n"; } else { if (Params::instance().verbose_) { std::cout << "Writing " << exifData.thumbnailFormat() << " thumbnail (" << exifData.thumbnailSize() << " Bytes) to file " << thumb << thumbExt << "\n"; } if (!Params::instance().force_ && Util::fileExists(thumb + thumbExt)) { std::cout << Params::instance().progname() << ": Overwrite `" << thumb + thumbExt << "'? "; std::string s; std::cin >> s; if (s[0] != 'y' && s[0] != 'Y') return 0; } rc = exifData.writeThumbnail(thumb); if (rc) { std::cerr << exifWriteError(rc, thumb) << "\n"; } } return rc; } Extract::AutoPtr Extract::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Extract::clone_() const { return new Extract(*this); } int Insert::run(const std::string& path) try { std::string exvPath = Util::dirname(path) + "/" + Util::basename(path, true) + ".exv"; Exiv2::ExifData exifData; int rc = exifData.read(exvPath); if (rc) { std::cerr << exifReadError(rc, exvPath) << "\n"; return rc; } if (Params::instance().verbose_) { std::cout << "Inserting metadata from " << exvPath << "\n"; } rc = exifData.write(path); if (rc) { std::cerr << exifWriteError(rc, path) << "\n"; } return rc; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in insert action for file " << path << ":\n" << e << "\n"; return 1; } // Insert::run Insert::AutoPtr Insert::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Insert::clone_() const { return new Insert(*this); } int Adjust::run(const std::string& path) try { adjustment_ = Params::instance().adjustment_; Exiv2::ExifData exifData; int rc = exifData.read(path); if (rc) { std::cerr << exifReadError(rc, path) << "\n"; return rc; } rc = adjustDateTime(exifData, "Image.OtherTags.DateTime", path); rc += adjustDateTime(exifData, "Image.DateTime.DateTimeOriginal", path); rc += adjustDateTime(exifData, "Image.DateTime.DateTimeDigitized", path); if (rc) return 1; rc = exifData.write(path); if (rc) { std::cerr << exifWriteError(rc, path) << "\n"; } return rc; } catch(const Exiv2::Error& e) { std::cerr << "Exif exception in adjust action for file " << path << ":\n" << e << "\n"; return 1; } // Adjust::run Adjust::AutoPtr Adjust::clone() const { return AutoPtr(dynamic_cast(clone_())); } Task* Adjust::clone_() const { return new Adjust(*this); } int Adjust::adjustDateTime(Exiv2::ExifData& exifData, const std::string& key, const std::string& path) const { Exiv2::ExifData::iterator md = exifData.findKey(key); if (md == exifData.end()) { // Key not found. That's ok, we do nothing. return 0; } std::string timeStr = md->toString(); if (timeStr == "" || timeStr[0] == ' ') { std::cerr << path << ": Timestamp of metadatum with key `" << key << "' not set\n"; return 1; } time_t time = str2Time(timeStr); if (time == (time_t)-1) { std::cerr << path << ": Failed to parse or convert timestamp `" << timeStr << "'\n"; return 1; } if (Params::instance().verbose_) { std::cout << "Adjusting `" << key << "' by" << (adjustment_ < 0 ? " " : " +") << adjustment_ << " s to "; } time += adjustment_; timeStr = time2Str(time); if (Params::instance().verbose_) { std::cout << timeStr << "\n"; } md->setValue(timeStr); return 0; } // Adjust::adjustDateTime } // namespace Action // ***************************************************************************** // local definitions namespace { int str2Tm(const std::string& timeStr, struct tm* tm) { if (timeStr.length() == 0 || timeStr[0] == ' ') return 1; if (timeStr.length() < 19) return 2; if ( timeStr[4] != ':' || timeStr[7] != ':' || timeStr[10] != ' ' || timeStr[13] != ':' || timeStr[16] != ':') return 3; if (0 == tm) return 4; ::memset(tm, 0x0, sizeof(struct tm)); long tmp; if (!Util::strtol(timeStr.substr(0,4).c_str(), tmp)) return 5; tm->tm_year = tmp - 1900; if (!Util::strtol(timeStr.substr(5,2).c_str(), tmp)) return 6; tm->tm_mon = tmp - 1; if (!Util::strtol(timeStr.substr(8,2).c_str(), tmp)) return 7; tm->tm_mday = tmp; if (!Util::strtol(timeStr.substr(11,2).c_str(), tmp)) return 8; tm->tm_hour = tmp; if (!Util::strtol(timeStr.substr(14,2).c_str(), tmp)) return 9; tm->tm_min = tmp; if (!Util::strtol(timeStr.substr(17,2).c_str(), tmp)) return 10; tm->tm_sec = tmp; return 0; } // str2Tm time_t str2Time(const std::string& timeStr) { struct tm tm; if (str2Tm(timeStr, &tm) != 0) return (time_t)-1; return ::mktime(&tm); } std::string time2Str(time_t time) { struct tm* tm = localtime(&time); if (0 == tm) return ""; std::ostringstream os; os << std::setfill('0') << tm->tm_year + 1900 << ":" << std::setw(2) << tm->tm_mon + 1 << ":" << std::setw(2) << tm->tm_mday << " " << std::setw(2) << tm->tm_hour << ":" << std::setw(2) << tm->tm_min << ":" << std::setw(2) << tm->tm_sec; return os.str(); } // time2Str std::string exifReadError(int rc, const std::string& path) { std::string error; switch (rc) { case -1: error = path + ": Failed to open the file"; break; case -2: error = path + ": The file contains data of an unknown image type"; break; case 1: error = path + ": Couldn't read from the input stream"; break; case 2: error = path + ": This does not look like a JPEG image"; break; case 3: error = path + ": No Exif data found in the file"; break; case -99: error = path + ": Unsupported Exif or GPS data found in IFD 1"; break; default: error = path + ": Reading Exif data failed, rc = " + Exiv2::toString(rc); break; } return error; } // exifReadError std::string exifWriteError(int rc, const std::string& path) { std::string error; switch (rc) { case -1: error = path + ": Failed to open the file"; break; case -2: error = path + ": The file contains data of an unknown image type"; break; case -3: error = path + ": Couldn't open temporary file"; break; case -4: error = path + ": Renaming temporary file failed: " + Util::strError(); break; case 1: error = path + ": Couldn't read from the input stream"; break; case 2: error = path + ": This does not look like a JPEG image"; break; case 3: error = path + ": No JFIF APP0 or Exif APP1 segment found in the file"; break; case 4: error = path + ": Writing to the output stream failed"; break; default: error = path + ": Reading Exif data failed, rc = " + Exiv2::toString(rc); break; } return error; } // exifWriteError }