// SPDX-License-Identifier: GPL-2.0-or-later /* File: makernote.cpp Author(s): Andreas Huggel (ahu) History: 11-Apr-06, ahu: created */ // included header files #include "config.h" #include "makernote_int.hpp" #include "safe_op.hpp" #include "tiffcomposite_int.hpp" #include "tiffimage_int.hpp" #include "tiffvisitor_int.hpp" #include "utils.hpp" // + standard includes #include #include #if __has_include() #include namespace fs = std::filesystem; #else #include namespace fs = std::experimental::filesystem; #endif #if !defined(_WIN32) #include #include #else #include #ifndef CSIDL_PROFILE #define CSIDL_PROFILE 40 #endif #include #endif #ifdef EXV_ENABLE_INIH #include #endif // ***************************************************************************** namespace { // Todo: Can be generalized further - get any tag as a string/long/... //! Get the Value for a tag within a particular group const Exiv2::Value* getExifValue(Exiv2::Internal::TiffComponent* pRoot, const uint16_t& tag, const Exiv2::IfdId& group); //! Get the model name from tag Exif.Image.Model std::string getExifModel(Exiv2::Internal::TiffComponent* pRoot); //! Nikon en/decryption function void ncrypt(Exiv2::byte* pData, uint32_t size, uint32_t count, uint32_t serial); } // namespace // ***************************************************************************** // class member definitions namespace Exiv2::Internal { // Function first looks for a config file in current working directory // on Win the file should be named "exiv2.ini" // on Lin the file should be named ".exiv2" // If not found in cwd, we return the default path // which is the user profile path on win and the home dir on linux std::string getExiv2ConfigPath() { #ifdef _WIN32 std::string inifile("exiv2.ini"); #else std::string inifile(".exiv2"); #endif auto currentPath = fs::current_path(); auto iniPath = currentPath / inifile; if (fs::exists(iniPath)) { return iniPath.string(); } #ifdef _WIN32 char buffer[1024]; if (SUCCEEDED(SHGetFolderPathA(nullptr, CSIDL_PROFILE, nullptr, 0, buffer))) { currentPath = buffer; } #else auto pw = getpwuid(getuid()); currentPath = std::string(pw ? pw->pw_dir : ""); #endif return (currentPath / inifile).string(); } std::string readExiv2Config([[maybe_unused]] const std::string& section, [[maybe_unused]] const std::string& value, const std::string& def) { std::string result = def; #ifdef EXV_ENABLE_INIH INIReader reader(Exiv2::Internal::getExiv2ConfigPath()); if (reader.ParseError() == 0) { result = reader.Get(section, value, def); } #endif return result; } const TiffMnRegistry TiffMnCreator::registry_[] = { {"Canon", IfdId::canonId, newIfdMn, newIfdMn2}, {"FOVEON", IfdId::sigmaId, newSigmaMn, newSigmaMn2}, {"FUJI", IfdId::fujiId, newFujiMn, newFujiMn2}, {"KONICA MINOLTA", IfdId::minoltaId, newIfdMn, newIfdMn2}, {"Minolta", IfdId::minoltaId, newIfdMn, newIfdMn2}, {"NIKON", IfdId::ifdIdNotSet, newNikonMn, nullptr}, // mnGroup_ is not used {"OLYMPUS", IfdId::ifdIdNotSet, newOlympusMn, nullptr}, // mnGroup_ is not used {"OM Digital", IfdId::olympus2Id, newOMSystemMn, newOMSystemMn2}, {"Panasonic", IfdId::panasonicId, newPanasonicMn, newPanasonicMn2}, {"PENTAX", IfdId::ifdIdNotSet, newPentaxMn, nullptr}, // mnGroup_ is not used {"RICOH", IfdId::ifdIdNotSet, newPentaxMn, nullptr}, // mnGroup_ is not used {"SAMSUNG", IfdId::samsung2Id, newSamsungMn, newSamsungMn2}, {"SIGMA", IfdId::sigmaId, newSigmaMn, newSigmaMn2}, {"SONY", IfdId::ifdIdNotSet, newSonyMn, nullptr}, // mnGroup_ is not used {"CASIO", IfdId::ifdIdNotSet, newCasioMn, nullptr}, // mnGroup_ is not used // Entries below are only used for lookup by group {"-", IfdId::nikon1Id, nullptr, newIfdMn2}, {"-", IfdId::nikon2Id, nullptr, newNikon2Mn2}, {"-", IfdId::nikon3Id, nullptr, newNikon3Mn2}, {"-", IfdId::sony1Id, nullptr, newSony1Mn2}, {"-", IfdId::sony2Id, nullptr, newSony2Mn2}, {"-", IfdId::olympusId, nullptr, newOlympusMn2}, {"-", IfdId::olympus2Id, nullptr, newOlympus2Mn2}, {"-", IfdId::pentaxId, nullptr, newPentaxMn2}, {"-", IfdId::pentaxDngId, nullptr, newPentaxDngMn2}, {"-", IfdId::casioId, nullptr, newIfdMn2}, {"-", IfdId::casio2Id, nullptr, newCasio2Mn2}, }; bool TiffMnRegistry::operator==(const std::string& key) const { std::string make(make_); if (!key.empty() && key.front() == '-') return false; return make == key.substr(0, make.length()); } bool TiffMnRegistry::operator==(IfdId key) const { return mnGroup_ == key; } TiffComponent* TiffMnCreator::create(uint16_t tag, IfdId group, const std::string& make, const byte* pData, size_t size, ByteOrder byteOrder) { auto tmr = Exiv2::find(registry_, make); if (!tmr) { return nullptr; } return tmr->newMnFct_(tag, group, tmr->mnGroup_, pData, size, byteOrder); } // TiffMnCreator::create TiffComponent* TiffMnCreator::create(uint16_t tag, IfdId group, IfdId mnGroup) { auto tmr = Exiv2::find(registry_, mnGroup); if (tmr) { if (tmr->newMnFct2_) { return tmr->newMnFct2_(tag, group, mnGroup); } std::cout << "mnGroup = " << mnGroup << "\n"; } return nullptr; } // TiffMnCreator::create void MnHeader::setByteOrder(ByteOrder /*byteOrder*/) { } size_t MnHeader::ifdOffset() const { return 0; } ByteOrder MnHeader::byteOrder() const { return invalidByteOrder; } size_t MnHeader::baseOffset(size_t /*mnOffset*/) const { return 0; } const byte OlympusMnHeader::signature_[] = {'O', 'L', 'Y', 'M', 'P', 0x00, 0x01, 0x00}; size_t OlympusMnHeader::sizeOfSignature() { return sizeof(signature_); } OlympusMnHeader::OlympusMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t OlympusMnHeader::size() const { return header_.size(); } size_t OlympusMnHeader::ifdOffset() const { return sizeOfSignature(); } bool OlympusMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, 6); } size_t OlympusMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // OlympusMnHeader::write const byte Olympus2MnHeader::signature_[] = {'O', 'L', 'Y', 'M', 'P', 'U', 'S', 0x00, 'I', 'I', 0x03, 0x00}; size_t Olympus2MnHeader::sizeOfSignature() { return sizeof(signature_); } Olympus2MnHeader::Olympus2MnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t Olympus2MnHeader::size() const { return header_.size(); } size_t Olympus2MnHeader::ifdOffset() const { return sizeOfSignature(); } size_t Olympus2MnHeader::baseOffset(size_t mnOffset) const { return mnOffset; } bool Olympus2MnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, 10); } size_t Olympus2MnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // Olympus2MnHeader::write const byte OMSystemMnHeader::signature_[] = {'O', 'M', ' ', 'S', 'Y', 'S', 'T', 'E', 'M', 0x00, 0x00, 0x00, 'I', 'I', 0x04, 0x00}; size_t OMSystemMnHeader::sizeOfSignature() { return sizeof(signature_); } OMSystemMnHeader::OMSystemMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t OMSystemMnHeader::size() const { return header_.size(); } size_t OMSystemMnHeader::ifdOffset() const { return sizeOfSignature(); } size_t OMSystemMnHeader::baseOffset(size_t mnOffset) const { return mnOffset; } bool OMSystemMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, sizeOfSignature() - 2); } size_t OMSystemMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // OMSystemMnHeader::write const byte FujiMnHeader::signature_[] = {'F', 'U', 'J', 'I', 'F', 'I', 'L', 'M', 0x0c, 0x00, 0x00, 0x00}; const ByteOrder FujiMnHeader::byteOrder_ = littleEndian; size_t FujiMnHeader::sizeOfSignature() { return sizeof(signature_); } FujiMnHeader::FujiMnHeader() { read(signature_, sizeOfSignature(), byteOrder_); } size_t FujiMnHeader::size() const { return header_.size(); } size_t FujiMnHeader::ifdOffset() const { return start_; } ByteOrder FujiMnHeader::byteOrder() const { return byteOrder_; } size_t FujiMnHeader::baseOffset(size_t mnOffset) const { return mnOffset; } bool FujiMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); // Read offset to the IFD relative to the start of the makernote // from the header. Note that we ignore the byteOrder argument start_ = header_.read_uint32(8, byteOrder_); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, 8); } size_t FujiMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // FujiMnHeader::write const byte Nikon2MnHeader::signature_[] = {'N', 'i', 'k', 'o', 'n', '\0', 0x01, 0x00}; size_t Nikon2MnHeader::sizeOfSignature() { return sizeof(signature_); } Nikon2MnHeader::Nikon2MnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t Nikon2MnHeader::size() const { return sizeOfSignature(); } size_t Nikon2MnHeader::ifdOffset() const { return start_; } bool Nikon2MnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature_, 6)) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); start_ = sizeOfSignature(); return true; } // Nikon2MnHeader::read size_t Nikon2MnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // Nikon2MnHeader::write const byte Nikon3MnHeader::signature_[] = {'N', 'i', 'k', 'o', 'n', '\0', 0x02, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; size_t Nikon3MnHeader::sizeOfSignature() { return sizeof(signature_); } Nikon3MnHeader::Nikon3MnHeader() : start_(sizeOfSignature()) { buf_.alloc(sizeOfSignature()); std::copy_n(signature_, buf_.size(), buf_.data()); } size_t Nikon3MnHeader::size() const { return sizeOfSignature(); } size_t Nikon3MnHeader::ifdOffset() const { return start_; } ByteOrder Nikon3MnHeader::byteOrder() const { return byteOrder_; } size_t Nikon3MnHeader::baseOffset(size_t mnOffset) const { return Safe::add(mnOffset, 10); } bool Nikon3MnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature_, 6)) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); TiffHeader th; if (!th.read(buf_.data(10), 8)) return false; byteOrder_ = th.byteOrder(); start_ = 10 + th.offset(); return true; } // Nikon3MnHeader::read size_t Nikon3MnHeader::write(IoWrapper& ioWrapper, ByteOrder byteOrder) const { ioWrapper.write(buf_.c_data(), 10); /// \todo: This removes any gap between the header and makernote IFD. The gap should be copied too. TiffHeader th(byteOrder); DataBuf buf = th.write(); ioWrapper.write(buf.c_data(), buf.size()); return 10 + buf.size(); } void Nikon3MnHeader::setByteOrder(ByteOrder byteOrder) { byteOrder_ = byteOrder; } const byte PanasonicMnHeader::signature_[] = {'P', 'a', 'n', 'a', 's', 'o', 'n', 'i', 'c', 0x00, 0x00, 0x00}; size_t PanasonicMnHeader::sizeOfSignature() { return sizeof(signature_); } PanasonicMnHeader::PanasonicMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t PanasonicMnHeader::size() const { return sizeOfSignature(); } size_t PanasonicMnHeader::ifdOffset() const { return start_; } bool PanasonicMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature_, 9)) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); start_ = sizeOfSignature(); return true; } // PanasonicMnHeader::read size_t PanasonicMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // PanasonicMnHeader::write const byte PentaxDngMnHeader::signature_[] = {'P', 'E', 'N', 'T', 'A', 'X', ' ', 0x00, 'M', 'M'}; size_t PentaxDngMnHeader::sizeOfSignature() { return sizeof(signature_); } PentaxDngMnHeader::PentaxDngMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t PentaxDngMnHeader::size() const { return header_.size(); } size_t PentaxDngMnHeader::baseOffset(size_t mnOffset) const { return mnOffset; } size_t PentaxDngMnHeader::ifdOffset() const { return sizeOfSignature(); } bool PentaxDngMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, 7); } size_t PentaxDngMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // PentaxDngMnHeader::write const byte PentaxMnHeader::signature_[] = {'A', 'O', 'C', 0x00, 'M', 'M'}; size_t PentaxMnHeader::sizeOfSignature() { return sizeof(signature_); } PentaxMnHeader::PentaxMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t PentaxMnHeader::size() const { return header_.size(); } size_t PentaxMnHeader::ifdOffset() const { return sizeOfSignature(); } bool PentaxMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; header_.alloc(sizeOfSignature()); std::copy_n(pData, header_.size(), header_.data()); return header_.size() >= sizeOfSignature() && 0 == header_.cmpBytes(0, signature_, 3); } size_t PentaxMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } SamsungMnHeader::SamsungMnHeader() { read(nullptr, 0, invalidByteOrder); } size_t SamsungMnHeader::size() const { return 0; } size_t SamsungMnHeader::baseOffset(size_t mnOffset) const { return mnOffset; } bool SamsungMnHeader::read(const byte* /*pData*/, size_t /*size*/, ByteOrder /*byteOrder*/) { return true; } // SamsungMnHeader::read size_t SamsungMnHeader::write(IoWrapper& /*ioWrapper*/, ByteOrder /*byteOrder*/) const { return 0; } // SamsungMnHeader::write const byte SigmaMnHeader::signature1_[] = {'S', 'I', 'G', 'M', 'A', '\0', '\0', '\0', 0x01, 0x00}; const byte SigmaMnHeader::signature2_[] = {'F', 'O', 'V', 'E', 'O', 'N', '\0', '\0', 0x01, 0x00}; size_t SigmaMnHeader::sizeOfSignature() { return sizeof(signature1_); } SigmaMnHeader::SigmaMnHeader() { read(signature1_, sizeOfSignature(), invalidByteOrder); } size_t SigmaMnHeader::size() const { return sizeOfSignature(); } size_t SigmaMnHeader::ifdOffset() const { return start_; } bool SigmaMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature1_, 8) && 0 != memcmp(pData, signature2_, 8)) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); start_ = sizeOfSignature(); return true; } // SigmaMnHeader::read size_t SigmaMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature1_, sizeOfSignature()); return sizeOfSignature(); } // SigmaMnHeader::write const byte SonyMnHeader::signature_[] = {'S', 'O', 'N', 'Y', ' ', 'D', 'S', 'C', ' ', '\0', '\0', '\0'}; size_t SonyMnHeader::sizeOfSignature() { return sizeof(signature_); } SonyMnHeader::SonyMnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t SonyMnHeader::size() const { return sizeOfSignature(); } size_t SonyMnHeader::ifdOffset() const { return start_; } bool SonyMnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature_, sizeOfSignature())) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); start_ = sizeOfSignature(); return true; } // SonyMnHeader::read size_t SonyMnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // SonyMnHeader::write const byte Casio2MnHeader::signature_[] = {'Q', 'V', 'C', '\0', '\0', '\0'}; const ByteOrder Casio2MnHeader::byteOrder_ = bigEndian; size_t Casio2MnHeader::sizeOfSignature() { return sizeof(signature_); } Casio2MnHeader::Casio2MnHeader() { read(signature_, sizeOfSignature(), invalidByteOrder); } size_t Casio2MnHeader::size() const { return sizeOfSignature(); } size_t Casio2MnHeader::ifdOffset() const { return start_; } ByteOrder Casio2MnHeader::byteOrder() const { return byteOrder_; } bool Casio2MnHeader::read(const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (!pData || size < sizeOfSignature()) return false; if (0 != memcmp(pData, signature_, sizeOfSignature())) return false; buf_.alloc(sizeOfSignature()); std::copy_n(pData, buf_.size(), buf_.data()); start_ = sizeOfSignature(); return true; } // Casio2MnHeader::read size_t Casio2MnHeader::write(IoWrapper& ioWrapper, ByteOrder /*byteOrder*/) const { ioWrapper.write(signature_, sizeOfSignature()); return sizeOfSignature(); } // Casio2MnHeader::write // ************************************************************************* // free functions TiffComponent* newIfdMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* /*pData*/, size_t size, ByteOrder /*byteOrder*/) { // Require at least an IFD with 1 entry, but not necessarily a next pointer if (size < 14) return nullptr; return newIfdMn2(tag, group, mnGroup); } TiffComponent* newIfdMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, nullptr); } TiffComponent* newOlympusMn(uint16_t tag, IfdId group, IfdId /*mnGroup*/, const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (size < 10 || std::string(reinterpret_cast(pData), 10) != std::string("OLYMPUS\0II", 10)) { // Require at least the header and an IFD with 1 entry if (size < OlympusMnHeader::sizeOfSignature() + 18) return nullptr; return newOlympusMn2(tag, group, IfdId::olympusId); } // Require at least the header and an IFD with 1 entry if (size < Olympus2MnHeader::sizeOfSignature() + 18) return nullptr; return newOlympus2Mn2(tag, group, IfdId::olympus2Id); } TiffComponent* newOlympusMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new OlympusMnHeader); } TiffComponent* newOlympus2Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new Olympus2MnHeader); } TiffComponent* newOMSystemMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* /*pData*/, size_t size, ByteOrder /*byteOrder*/) { // Require at least the header and an IFD with 1 entry if (size < OMSystemMnHeader::sizeOfSignature() + 18) return nullptr; return newOMSystemMn2(tag, group, mnGroup); } TiffComponent* newOMSystemMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new OMSystemMnHeader); } TiffComponent* newFujiMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* /*pData*/, size_t size, ByteOrder /*byteOrder*/) { // Require at least the header and an IFD with 1 entry if (size < FujiMnHeader::sizeOfSignature() + 18) return nullptr; return newFujiMn2(tag, group, mnGroup); } TiffComponent* newFujiMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new FujiMnHeader); } TiffComponent* newNikonMn(uint16_t tag, IfdId group, IfdId /*mnGroup*/, const byte* pData, size_t size, ByteOrder /*byteOrder*/) { // If there is no "Nikon" string it must be Nikon1 format if (size < 6 || std::string(reinterpret_cast(pData), 6) != std::string("Nikon\0", 6)) { // Require at least an IFD with 1 entry if (size < 18) return nullptr; return newIfdMn2(tag, group, IfdId::nikon1Id); } // If the "Nikon" string is not followed by a TIFF header, we assume // Nikon2 format TiffHeader tiffHeader; if (size < 18 || !tiffHeader.read(pData + 10, size - 10) || tiffHeader.tag() != 0x002a) { // Require at least the header and an IFD with 1 entry if (size < Nikon2MnHeader::sizeOfSignature() + 18) return nullptr; return newNikon2Mn2(tag, group, IfdId::nikon2Id); } // Else we have a Nikon3 makernote // Require at least the header and an IFD with 1 entry if (size < Nikon3MnHeader::sizeOfSignature() + 18) return nullptr; return newNikon3Mn2(tag, group, IfdId::nikon3Id); } TiffComponent* newNikon2Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new Nikon2MnHeader); } TiffComponent* newNikon3Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new Nikon3MnHeader); } TiffComponent* newPanasonicMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* /*pData*/, size_t size, ByteOrder /*byteOrder*/) { // Require at least the header and an IFD with 1 entry, but without a next pointer if (size < PanasonicMnHeader::sizeOfSignature() + 14) return nullptr; return newPanasonicMn2(tag, group, mnGroup); } TiffComponent* newPanasonicMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new PanasonicMnHeader, false); } TiffComponent* newPentaxMn(uint16_t tag, IfdId group, IfdId /*mnGroup*/, const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (size > 8 && std::string(reinterpret_cast(pData), 8) == std::string("PENTAX \0", 8)) { // Require at least the header and an IFD with 1 entry if (size < PentaxDngMnHeader::sizeOfSignature() + 18) return nullptr; return newPentaxDngMn2(tag, group, (tag == 0xc634 ? IfdId::pentaxDngId : IfdId::pentaxId)); } if (size > 4 && std::string(reinterpret_cast(pData), 4) == std::string("AOC\0", 4)) { // Require at least the header and an IFD with 1 entry if (size < PentaxMnHeader::sizeOfSignature() + 18) return nullptr; return newPentaxMn2(tag, group, IfdId::pentaxId); } return nullptr; } TiffComponent* newPentaxMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new PentaxMnHeader); } TiffComponent* newPentaxDngMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new PentaxDngMnHeader); } TiffComponent* newSamsungMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* pData, size_t size, ByteOrder /*byteOrder*/) { if (size > 4 && std::string(reinterpret_cast(pData), 4) == std::string("AOC\0", 4)) { // Samsung branded Pentax camera: // Require at least the header and an IFD with 1 entry if (size < PentaxMnHeader::sizeOfSignature() + 18) return nullptr; return newPentaxMn2(tag, group, IfdId::pentaxId); } // Genuine Samsung camera: // Require at least an IFD with 1 entry if (size < 18) return nullptr; return newSamsungMn2(tag, group, mnGroup); } TiffComponent* newSamsungMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new SamsungMnHeader); } TiffComponent* newSigmaMn(uint16_t tag, IfdId group, IfdId mnGroup, const byte* /*pData*/, size_t size, ByteOrder /*byteOrder*/) { // Require at least the header and an IFD with 1 entry if (size < SigmaMnHeader::sizeOfSignature() + 18) return nullptr; return newSigmaMn2(tag, group, mnGroup); } TiffComponent* newSigmaMn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new SigmaMnHeader); } TiffComponent* newSonyMn(uint16_t tag, IfdId group, IfdId /*mnGroup*/, const byte* pData, size_t size, ByteOrder /*byteOrder*/) { // If there is no "SONY DSC " string we assume it's a simple IFD Makernote if (size < 12 || std::string(reinterpret_cast(pData), 12) != std::string("SONY DSC \0\0\0", 12)) { // Require at least an IFD with 1 entry if (size < 18) return nullptr; return newSony2Mn2(tag, group, IfdId::sony2Id); } // Require at least the header and an IFD with 1 entry, but without a next pointer if (size < SonyMnHeader::sizeOfSignature() + 14) return nullptr; return newSony1Mn2(tag, group, IfdId::sony1Id); } TiffComponent* newSony1Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new SonyMnHeader, false); } TiffComponent* newSony2Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, nullptr, true); } TiffComponent* newCasioMn(uint16_t tag, IfdId group, IfdId /* mnGroup*/, const byte* pData, size_t size, ByteOrder /* byteOrder */) { if (size > 6 && std::string(reinterpret_cast(pData), 6) == std::string("QVC\0\0\0", 6)) return newCasio2Mn2(tag, group, IfdId::casio2Id); // Require at least an IFD with 1 entry, but not necessarily a next pointer if (size < 14) return nullptr; return newIfdMn2(tag, group, IfdId::casioId); } TiffComponent* newCasio2Mn2(uint16_t tag, IfdId group, IfdId mnGroup) { return new TiffIfdMakernote(tag, group, mnGroup, new Casio2MnHeader); } //! Structure for an index into the array set of complex binary arrays. struct NikonArrayIdx { //! Key for comparisons struct Key { //! Constructor Key(uint16_t tag, const char* ver, size_t size) : tag_(tag), ver_(ver), size_(size) { } uint16_t tag_; //!< Tag number const char* ver_; //!< Version string size_t size_; //!< Size of the data (not the version string) }; //! Comparison operator for a key bool operator==(const Key& key) const { return key.tag_ == tag_ && 0 == strncmp(key.ver_, ver_, strlen(ver_)) && (size_ == 0 || key.size_ == size_); } uint16_t tag_; //!< Tag number of the binary array const char* ver_; //!< Version string uint32_t size_; //!< Size of the data int idx_; //!< Index into the array set uint32_t start_; //!< Start of the encrypted data }; #define NA ((uint32_t)-1) //! Nikon binary array version lookup table constexpr NikonArrayIdx nikonArrayIdx[] = { // NikonSi {0x0091, "0208", 0, 0, 4}, // D80 {0x0091, "0209", 0, 1, 4}, // D40 {0x0091, "0210", 5291, 2, 4}, // D300 {0x0091, "0210", 5303, 3, 4}, // D300, firmware version 1.10 {0x0091, "02", 0, 4, 4}, // Other v2.* (encrypted) {0x0091, "01", 0, 5, NA}, // Other v1.* (not encrypted) // NikonCb {0x0097, "0100", 0, 0, NA}, {0x0097, "0102", 0, 1, NA}, {0x0097, "0103", 0, 4, NA}, {0x0097, "0205", 0, 2, 4}, {0x0097, "0209", 0, 5, 284}, {0x0097, "0212", 0, 5, 284}, {0x0097, "0214", 0, 5, 284}, {0x0097, "02", 0, 3, 284}, // NikonLd {0x0098, "0100", 0, 0, NA}, {0x0098, "0101", 0, 1, NA}, {0x0098, "0201", 0, 1, 4}, {0x0098, "0202", 0, 1, 4}, {0x0098, "0203", 0, 1, 4}, {0x0098, "0204", 0, 2, 4}, {0x0098, "0800", 0, 3, 4}, // for e.g. Z6/7 {0x0098, "0801", 0, 3, 4}, // for e.g. Z6/7 {0x0098, "0802", 0, 3, 4}, // for e.g. Z9 // NikonFl {0x00a8, "0100", 0, 0, NA}, {0x00a8, "0101", 0, 0, NA}, {0x00a8, "0102", 0, 1, NA}, {0x00a8, "0103", 0, 2, NA}, {0x00a8, "0104", 0, 2, NA}, {0x00a8, "0105", 0, 2, NA}, {0x00a8, "0106", 0, 3, NA}, {0x00a8, "0107", 0, 4, NA}, {0x00a8, "0108", 0, 4, NA}, // NikonAf {0x00b7, "0100", 30, 0, NA}, // These sizes have been found in tiff headers of MN {0x00b7, "0101", 84, 1, NA}, // tag 0xb7 in sample image metadata for each version }; int nikonSelector(uint16_t tag, const byte* pData, size_t size, TiffComponent* /*pRoot*/) { if (size < 4) return -1; auto ix = NikonArrayIdx::Key(tag, reinterpret_cast(pData), size); auto it = Exiv2::find(nikonArrayIdx, ix); if (!it) return -1; return it->idx_; } DataBuf nikonCrypt(uint16_t tag, const byte* pData, size_t size, TiffComponent* pRoot) { DataBuf buf; if (size < 4) return buf; auto nci = Exiv2::find(nikonArrayIdx, NikonArrayIdx::Key(tag, reinterpret_cast(pData), size)); if (!nci || nci->start_ == NA || size <= nci->start_) return buf; // Find Exif.Nikon3.ShutterCount TiffFinder finder(0x00a7, IfdId::nikon3Id); pRoot->accept(finder); auto te = dynamic_cast(finder.result()); if (!te || !te->pValue() || te->pValue()->count() == 0) return buf; auto count = te->pValue()->toUint32(); // Find Exif.Nikon3.SerialNumber finder.init(0x001d, IfdId::nikon3Id); pRoot->accept(finder); te = dynamic_cast(finder.result()); if (!te || !te->pValue() || te->pValue()->count() == 0) return buf; bool ok(false); auto serial = stringTo(te->pValue()->toString(), ok); if (!ok) { std::string model = getExifModel(pRoot); if (model.empty()) return buf; if (model.find("D50") != std::string::npos) { serial = 0x22; } else { serial = 0x60; } } buf.alloc(size); std::copy_n(pData, buf.size(), buf.data()); ncrypt(buf.data(nci->start_), static_cast(buf.size()) - nci->start_, count, serial); return buf; } int sonyCsSelector(uint16_t /*tag*/, const byte* /*pData*/, size_t /*size*/, TiffComponent* pRoot) { std::string model = getExifModel(pRoot); if (model.empty()) return -1; int idx = 0; if (model.find("DSLR-A330") != std::string::npos || model.find("DSLR-A380") != std::string::npos) { idx = 1; } return idx; } int sony2010eSelector(uint16_t /*tag*/, const byte* /*pData*/, size_t /*size*/, TiffComponent* pRoot) { static constexpr const char* models[] = { "SLT-A58", "SLT-A99", "ILCE-3000", "ILCE-3500", "NEX-3N", "NEX-5R", "NEX-5T", "NEX-6", "VG30E", "VG900", "DSC-RX100", "DSC-RX1", "DSC-RX1R", "DSC-HX300", "DSC-HX50V", "DSC-TX30", "DSC-WX60", "DSC-WX200", "DSC-WX300", }; return Exiv2::find(models, getExifModel(pRoot)) ? 0 : -1; } int sony2FpSelector(uint16_t /*tag*/, const byte* /*pData*/, size_t /*size*/, TiffComponent* pRoot) { // Not valid for models beginning std::string model = getExifModel(pRoot); const std::array strs{"SLT-", "HV", "ILCA-"}; return std::any_of(strs.begin(), strs.end(), [&model](auto& m) { return startsWith(model, m); }) ? -1 : 0; } int sonyMisc2bSelector(uint16_t /*tag*/, const byte* /*pData*/, size_t /*size*/, TiffComponent* pRoot) { // From Exiftool: https://github.com/exiftool/exiftool/blob/master/lib/Image/ExifTool/Sony.pm // > First byte must be 9 or 12 or 13 or 15 or 16 and 4th byte must be 2 (deciphered) // Get the value from the image format that is being used auto value = getExifValue(pRoot, 0x9404, Exiv2::IfdId::sony1Id); if (!value) { value = getExifValue(pRoot, 0x9404, Exiv2::IfdId::sony2Id); if (!value) return -1; } if (value->count() < 4) return -1; switch (value->toInt64(0)) { // Using encrypted values case 231: // 231 == 9 case 234: // 234 == 12 case 205: // 205 == 13 case 138: // 138 == 15 case 112: // 112 == 16 return value->toInt64(3) == 8 ? 0 : -1; // 8 == 2 default: break; } return -1; } int sonyMisc3cSelector(uint16_t /*tag*/, const byte* /*pData*/, size_t /*size*/, TiffComponent* pRoot) { // For condition, see Exiftool (Tag 9400c): // https://github.com/exiftool/exiftool/blob/7368629751669ba170511419b3d1e05bf0076d0e/lib/Image/ExifTool/Sony.pm#L1681 // Get the value from the image format that is being used auto value = getExifValue(pRoot, 0x9400, Exiv2::IfdId::sony1Id); if (!value) { value = getExifValue(pRoot, 0x9400, Exiv2::IfdId::sony2Id); if (!value) return -1; } if (value->count() < 1) return -1; switch (value->toInt64()) { case 35: case 36: case 38: case 40: case 49: case 50: return 0; default: break; } return -1; } } // namespace Exiv2::Internal // ***************************************************************************** // local definitions namespace { const Exiv2::Value* getExifValue(Exiv2::Internal::TiffComponent* pRoot, const uint16_t& tag, const Exiv2::IfdId& group) { Exiv2::Internal::TiffFinder finder(tag, group); if (!pRoot) return nullptr; pRoot->accept(finder); auto te = dynamic_cast(finder.result()); return (!te || !te->pValue()) ? nullptr : te->pValue(); } std::string getExifModel(Exiv2::Internal::TiffComponent* pRoot) { // Lookup the Exif.Image.Model tag const auto value = getExifValue(pRoot, 0x0110, Exiv2::IfdId::ifd0Id); return (!value || value->count() == 0) ? std::string("") : static_cast(value->toString()); } void ncrypt(Exiv2::byte* pData, uint32_t size, uint32_t count, uint32_t serial) { static const Exiv2::byte xlat[2][256] = { {0xc1, 0xbf, 0x6d, 0x0d, 0x59, 0xc5, 0x13, 0x9d, 0x83, 0x61, 0x6b, 0x4f, 0xc7, 0x7f, 0x3d, 0x3d, 0x53, 0x59, 0xe3, 0xc7, 0xe9, 0x2f, 0x95, 0xa7, 0x95, 0x1f, 0xdf, 0x7f, 0x2b, 0x29, 0xc7, 0x0d, 0xdf, 0x07, 0xef, 0x71, 0x89, 0x3d, 0x13, 0x3d, 0x3b, 0x13, 0xfb, 0x0d, 0x89, 0xc1, 0x65, 0x1f, 0xb3, 0x0d, 0x6b, 0x29, 0xe3, 0xfb, 0xef, 0xa3, 0x6b, 0x47, 0x7f, 0x95, 0x35, 0xa7, 0x47, 0x4f, 0xc7, 0xf1, 0x59, 0x95, 0x35, 0x11, 0x29, 0x61, 0xf1, 0x3d, 0xb3, 0x2b, 0x0d, 0x43, 0x89, 0xc1, 0x9d, 0x9d, 0x89, 0x65, 0xf1, 0xe9, 0xdf, 0xbf, 0x3d, 0x7f, 0x53, 0x97, 0xe5, 0xe9, 0x95, 0x17, 0x1d, 0x3d, 0x8b, 0xfb, 0xc7, 0xe3, 0x67, 0xa7, 0x07, 0xf1, 0x71, 0xa7, 0x53, 0xb5, 0x29, 0x89, 0xe5, 0x2b, 0xa7, 0x17, 0x29, 0xe9, 0x4f, 0xc5, 0x65, 0x6d, 0x6b, 0xef, 0x0d, 0x89, 0x49, 0x2f, 0xb3, 0x43, 0x53, 0x65, 0x1d, 0x49, 0xa3, 0x13, 0x89, 0x59, 0xef, 0x6b, 0xef, 0x65, 0x1d, 0x0b, 0x59, 0x13, 0xe3, 0x4f, 0x9d, 0xb3, 0x29, 0x43, 0x2b, 0x07, 0x1d, 0x95, 0x59, 0x59, 0x47, 0xfb, 0xe5, 0xe9, 0x61, 0x47, 0x2f, 0x35, 0x7f, 0x17, 0x7f, 0xef, 0x7f, 0x95, 0x95, 0x71, 0xd3, 0xa3, 0x0b, 0x71, 0xa3, 0xad, 0x0b, 0x3b, 0xb5, 0xfb, 0xa3, 0xbf, 0x4f, 0x83, 0x1d, 0xad, 0xe9, 0x2f, 0x71, 0x65, 0xa3, 0xe5, 0x07, 0x35, 0x3d, 0x0d, 0xb5, 0xe9, 0xe5, 0x47, 0x3b, 0x9d, 0xef, 0x35, 0xa3, 0xbf, 0xb3, 0xdf, 0x53, 0xd3, 0x97, 0x53, 0x49, 0x71, 0x07, 0x35, 0x61, 0x71, 0x2f, 0x43, 0x2f, 0x11, 0xdf, 0x17, 0x97, 0xfb, 0x95, 0x3b, 0x7f, 0x6b, 0xd3, 0x25, 0xbf, 0xad, 0xc7, 0xc5, 0xc5, 0xb5, 0x8b, 0xef, 0x2f, 0xd3, 0x07, 0x6b, 0x25, 0x49, 0x95, 0x25, 0x49, 0x6d, 0x71, 0xc7}, {0xa7, 0xbc, 0xc9, 0xad, 0x91, 0xdf, 0x85, 0xe5, 0xd4, 0x78, 0xd5, 0x17, 0x46, 0x7c, 0x29, 0x4c, 0x4d, 0x03, 0xe9, 0x25, 0x68, 0x11, 0x86, 0xb3, 0xbd, 0xf7, 0x6f, 0x61, 0x22, 0xa2, 0x26, 0x34, 0x2a, 0xbe, 0x1e, 0x46, 0x14, 0x68, 0x9d, 0x44, 0x18, 0xc2, 0x40, 0xf4, 0x7e, 0x5f, 0x1b, 0xad, 0x0b, 0x94, 0xb6, 0x67, 0xb4, 0x0b, 0xe1, 0xea, 0x95, 0x9c, 0x66, 0xdc, 0xe7, 0x5d, 0x6c, 0x05, 0xda, 0xd5, 0xdf, 0x7a, 0xef, 0xf6, 0xdb, 0x1f, 0x82, 0x4c, 0xc0, 0x68, 0x47, 0xa1, 0xbd, 0xee, 0x39, 0x50, 0x56, 0x4a, 0xdd, 0xdf, 0xa5, 0xf8, 0xc6, 0xda, 0xca, 0x90, 0xca, 0x01, 0x42, 0x9d, 0x8b, 0x0c, 0x73, 0x43, 0x75, 0x05, 0x94, 0xde, 0x24, 0xb3, 0x80, 0x34, 0xe5, 0x2c, 0xdc, 0x9b, 0x3f, 0xca, 0x33, 0x45, 0xd0, 0xdb, 0x5f, 0xf5, 0x52, 0xc3, 0x21, 0xda, 0xe2, 0x22, 0x72, 0x6b, 0x3e, 0xd0, 0x5b, 0xa8, 0x87, 0x8c, 0x06, 0x5d, 0x0f, 0xdd, 0x09, 0x19, 0x93, 0xd0, 0xb9, 0xfc, 0x8b, 0x0f, 0x84, 0x60, 0x33, 0x1c, 0x9b, 0x45, 0xf1, 0xf0, 0xa3, 0x94, 0x3a, 0x12, 0x77, 0x33, 0x4d, 0x44, 0x78, 0x28, 0x3c, 0x9e, 0xfd, 0x65, 0x57, 0x16, 0x94, 0x6b, 0xfb, 0x59, 0xd0, 0xc8, 0x22, 0x36, 0xdb, 0xd2, 0x63, 0x98, 0x43, 0xa1, 0x04, 0x87, 0x86, 0xf7, 0xa6, 0x26, 0xbb, 0xd6, 0x59, 0x4d, 0xbf, 0x6a, 0x2e, 0xaa, 0x2b, 0xef, 0xe6, 0x78, 0xb6, 0x4e, 0xe0, 0x2f, 0xdc, 0x7c, 0xbe, 0x57, 0x19, 0x32, 0x7e, 0x2a, 0xd0, 0xb8, 0xba, 0x29, 0x00, 0x3c, 0x52, 0x7d, 0xa8, 0x49, 0x3b, 0x2d, 0xeb, 0x25, 0x49, 0xfa, 0xa3, 0xaa, 0x39, 0xa7, 0xc5, 0xa7, 0x50, 0x11, 0x36, 0xfb, 0xc6, 0x67, 0x4a, 0xf5, 0xa5, 0x12, 0x65, 0x7e, 0xb0, 0xdf, 0xaf, 0x4e, 0xb3, 0x61, 0x7f, 0x2f}}; Exiv2::byte key = 0; for (int i = 0; i < 4; ++i) { key ^= (count >> (i * 8)) & 0xff; } Exiv2::byte ci = xlat[0][serial & 0xff]; Exiv2::byte cj = xlat[1][key]; Exiv2::byte ck = 0x60; for (uint32_t i = 0; i < size; ++i) { cj += ci * ck++; pData[i] ^= cj; } } } // namespace