// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004 Andreas Huggel * * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*! @file exif.hpp @brief Encoding and decoding of %Exif data @version $Name: $ $Revision: 1.16 $ @author Andreas Huggel (ahu) ahuggel@gmx.net @date 09-Jan-04, ahu: created */ #ifndef EXIF_HPP_ #define EXIF_HPP_ // ***************************************************************************** // included header files #include "tags.hpp" // + standard includes #include #include #include #include // ***************************************************************************** // namespace extensions //! Provides classes and functions to encode and decode %Exif data. namespace Exif { // ***************************************************************************** // class declarations class ExifData; class Entry; // ***************************************************************************** // class definitions /*! @brief Helper class to access JPEG images */ class JpegImage { // Copying not allowed JpegImage(const JpegImage& rhs); // Assignment not allowed JpegImage& operator=(const JpegImage& rhs); public: //! Default constructor JpegImage(); //! Default destructor ~JpegImage(); /*! @brief Checks if the stream is the beginning of a JPEG image @param is Input stream to test @return true if the input stream starts the JPEG SOI marker. The stream is advanced by two characters in this case.
false if the input stream does not begin with the JPEG SOI marker. The stream is not advanced in this case.
false if reading the first two bytes from the stream fails. Consult the stream state for more information. In this case, the stream may or may not have been advanced by 1 or 2 characters. */ static bool isJpeg(std::istream& is); /*! @brief Reads the %Exif data from the file path into the internal data buffer. @param path Path to the file. @return 0 if successful;
-1 if the file cannot be opened; or
the return code of readExifData(std::istream& is) if the call to this function fails. */ int readExifData(const std::string& path); /*! @brief Reads the %Exif data from the stream into the internal data buffer. @param is Input stream to read from. @return 0 if successful;
1 if reading from the stream failed (consult the stream state for more information);
2 if the stream does not contain a JPEG image;
3 if no %Exif APP1 segment was found after SOI at the beginning of the input stream. */ int readExifData(std::istream& is); /*! @brief Write the %Exif data to file path, which must contain a JPEG image. If an %Exif APP1 section exists in the file, it is replaced. Otherwise, an %Exif data section is created. @param path Path to the file. @return 0 if successful;
-1 if the input file cannot be opened;
-2 if the temporary file cannot be opened;
-3 if renaming the temporary file fails; or
the return code of writeExifData(std::ostream& os, std::istream& is) const if the call to this function fails. */ int writeExifData(const std::string& path) const; /*! @brief Copy %Exif data into the JPEG image is, write the resulting image to the output stream os. If an %Exif APP1 section exists in the input file, it is replaced. Otherwise, an %Exif data section is created. @param os Output stream to write to (e.g., a temporary file). @param is Input stream with the JPEG image to which the %Exif data should be copied. @return 0 if successful;
1 if reading from the input stream failed (consult the stream state for more information);
2 if the input stream does not contain a JPEG image;
3 if neither a JFIF APP0 segment nor a %Exif APP1 segment was found after SOI at the beginning of the input stream;
4 if writing to the output stream failed (consult the stream state for more information). */ int writeExifData(std::ostream& os, std::istream& is) const; /*! @brief Set the %Exif data. The data is copied into the internal data buffer. @param buf Pointer to the data buffer. @param size Number of characters in the data buffer. */ void setExifData(const char* buf, long size); //! @name Accessors //@{ //! Returns the size of the %Exif data buffer long sizeExifData() const { return sizeExifData_; } //! Returns a read-only pointer to the %Exif data buffer const char* exifData() const { return exifData_; } //@} private: static const uint16 soi_; // SOI marker static const uint16 app0_; // APP0 marker static const uint16 app1_; // APP1 marker static const char exifId_[]; // Exif identifier static const char jfifId_[]; // JFIF identifier long sizeExifData_; // Size of the Exif data buffer char* exifData_; // Exif data buffer }; // class JpegImage //! Type to express the byte order (little or big endian) enum ByteOrder { littleEndian, bigEndian }; //! Helper class modelling the TIFF header structure. class TiffHeader { public: /*! @brief Default constructor. Optionally sets the byte order (default: little endian). */ explicit TiffHeader(ByteOrder byteOrder =littleEndian); //! Read the TIFF header from a data buffer. Returns 0 if successful. int read(const char* buf); /*! @brief Write a standard TIFF header into buf as a data string, return number of bytes copied. Only the byte order of the TIFF header varies, the values written for offset and tag are constant, i.e., independent of the values possibly read before a call to this function. The value 0x00000008 is written for the offset, tag is set to 0x002a. @param buf The data buffer to write to. @return The number of bytes written. */ long copy(char* buf) const; //! Return the size of the TIFF header in bytes. long size() const { return 8; } //! @name Accessors //@{ //! Return the byte order (little or big endian). ByteOrder byteOrder() const { return byteOrder_; } //! Return the tag value. uint16 tag() const { return tag_; } /*! @brief Return the offset to IFD0 from the start of the TIFF header. The offset is 0x00000008 if IFD0 begins immediately after the TIFF header. */ uint32 offset() const { return offset_; } //@} private: ByteOrder byteOrder_; uint16 tag_; uint32 offset_; }; // class TiffHeader /*! @brief Common interface for all values. The interface provides a uniform way to access values independent from their actual C++ type for simple tasks like reading the values from a string or data buffer. For other tasks, like modifying values you may need to downcast it to the actual subclass of %Value so that you can access the subclass specific interface. */ class Value { public: //! Constructor, taking a type id to initialize the base class with explicit Value(TypeId typeId) : type_(typeId) {} //! Virtual destructor. virtual ~Value() {} /*! @brief Read the value from a character buffer. @param buf Pointer to the data buffer to read from @param len Number of bytes in the data buffer @param byteOrder Applicable byte order (little or big endian). */ virtual void read(const char* buf, long len, ByteOrder byteOrder) =0; /*! @brief Set the value from a string buffer. The format of the string corresponds to that of the write() method, i.e., a string obtained through the write() method can be read by this function. @param buf The string to read from. */ virtual void read(const std::string& buf) =0; /*! @brief Write value to a character data buffer. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @param buf Data buffer to write to. @param byteOrder Applicable byte order (little or big endian). @return Number of characters written. */ virtual long copy(char* buf, ByteOrder byteOrder) const =0; //! Return the number of components of the value virtual long count() const =0; //! Return the size of the value in bytes virtual long size() const =0; /*! @brief Return a pointer to a copy of itself (deep copy). The caller owns this copy and is responsible to delete it! */ virtual Value* clone() const =0; /*! @brief Write the value to an output stream. You do not usually have to use this function; it is used for the implementation of the output operator for %Value, operator<<(std::ostream &os, const Value &value). */ virtual std::ostream& write(std::ostream& os) const =0; /*! @brief Convert the n-th component of the value to a long. The behaviour of this method may be undefined if there is no n-th component. @return The converted value. */ virtual long toLong(long n =0) const =0; //! Return the value as a string std::string toString() const; //! Return the type identifier (Exif data format type). TypeId typeId() const { return TypeId(type_); } /*! @brief A (simple) factory to create a Value type. The following Value subclasses are created depending on typeId:

typeId%Value subclass
invalid%DataValue(invalid)
unsignedByte%DataValue(unsignedByte)
asciiString%AsciiValue
unsignedShort%ValueType < uint16 >
unsignedLong%ValueType < uint32 >
unsignedRational%ValueType < URational >
invalid6%DataValue(invalid6)
undefined%DataValue
signedShort%ValueType < int16 >
signedLong%ValueType < int32 >
signedRational%ValueType < Rational >
default:%DataValue(typeId)
@param typeId Type of the value. @return Pointer to the newly created Value. The caller owns this copy and is responsible to delete it! */ static Value* create(TypeId typeId); private: const uint16 type_; //!< Type of the data }; // class Value //! Output operator for Value types inline std::ostream& operator<<(std::ostream& os, const Value& value) { return value.write(os); } //! %Value for an undefined data type. class DataValue : public Value { public: //! Default constructor. DataValue(TypeId typeId =undefined) : Value(typeId) {} /*! @brief Read the value from a character buffer. The byte order is required by the interface but not used by this method. @param buf Pointer to the data buffer to read from @param len Number of bytes in the data buffer @param byteOrder Byte order. Not used. */ virtual void read(const char* buf, long len, ByteOrder byteOrder); //! Set the data from a string of integer values (e.g., "0 1 2 3") virtual void read(const std::string& buf); /*! @brief Write value to a character data buffer. The byte order is required by the interface but not used by this method. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @param buf Data buffer to write to. @param byteOrder Byte order. Not used. @return Number of characters written. */ virtual long copy(char* buf, ByteOrder byteOrder) const; virtual long count() const { return size(); } virtual long size() const; virtual Value* clone() const; virtual std::ostream& write(std::ostream& os) const; virtual long toLong(long n =0) const { return value_[n]; } private: std::string value_; }; // class DataValue //! %Value for an Ascii string type. class AsciiValue : public Value { public: //! Default constructor. AsciiValue() : Value(asciiString) {} /*! @brief Read the value from a character buffer. The byte order is required by the interface but not used by this method. @param buf Pointer to the data buffer to read from @param len Number of bytes in the data buffer @param byteOrder Byte order. Not used. */ virtual void read(const char* buf, long len, ByteOrder byteOrder); /*! @brief Set the value to that of the string buf. A terminating '\\0' character is appended to the value if buf doesn't end with '\\0'. */ virtual void read(const std::string& buf); /*! @brief Write value to a character data buffer. The byte order is required by the interface but not used by this method. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @param buf Data buffer to write to. @param byteOrder Byte order. Not used. @return Number of characters written. */ virtual long copy(char* buf, ByteOrder byteOrder) const; virtual long count() const { return size(); } virtual long size() const; virtual Value* clone() const; virtual std::ostream& write(std::ostream& os) const; virtual long toLong(long n =0) const { return value_[n]; } private: std::string value_; }; // class AsciiValue /*! @brief Template for a %Value of a basic type. This is used for unsigned and signed short, long and rationals. */ template class ValueType : public Value { public: //! Default constructor. ValueType() : Value(getType()) {} virtual void read(const char* buf, long len, ByteOrder byteOrder); /*! @brief Set the data from a string of values of type T (e.g., "0 1 2 3" or "1/2 1/3 1/4" depending on what T is). Generally, the accepted input format is the same as that produced by the write() method. */ virtual void read(const std::string& buf); virtual long copy(char* buf, ByteOrder byteOrder) const; virtual long count() const { return value_.size(); } virtual long size() const; virtual Value* clone() const; virtual std::ostream& write(std::ostream& os) const; virtual long toLong(long n =0) const; //! Container for values typedef std::vector ValueList; //! Iterator type defined for convenience. typedef typename std::vector::iterator iterator; //! Const iterator type defined for convenience. typedef typename std::vector::const_iterator const_iterator; /*! @brief The container for all values. In your application, if you know what subclass of Value you're dealing with (and possibly the T) then you can access this STL container through the usual standard library functions. */ ValueList value_; }; // class ValueType //! Unsigned short value type typedef ValueType UShortValue; //! Unsigned long value type typedef ValueType ULongValue; //! Unsigned rational value type typedef ValueType URationalValue; //! Signed short value type typedef ValueType ShortValue; //! Signed long value type typedef ValueType LongValue; //! Signed rational value type typedef ValueType RationalValue; /*! @brief Information related to one %Exif tag. */ class Metadatum { public: /*! @brief Constructor to build a metadatum from an IFD entry. */ Metadatum(const Entry& e, ByteOrder byteOrder); /*! @brief Constructor for new tags created by an application, which only needs to provide a key / value pair. %Metadatum copies (clones) the value if one is provided. Alternatively, a program can create an 'empty' metadatum with only a key and set the value later, using setValue(). @param key The key of the metadatum. @param value Pointer to a metadatum value. @throw Error ("Invalid key") if the key cannot be parsed and converted to a tag number and an IFD id or the section name does not match. */ explicit Metadatum(const std::string& key, Value* value =0); //! Destructor ~Metadatum(); //! Copy constructor Metadatum(const Metadatum& rhs); //! Assignment operator Metadatum& operator=(const Metadatum& rhs); /*! @brief Set the value. This method copies (clones) the value. */ void setValue(const Value* value); /*! @brief Set the value to the string buf. Uses Value::read(const std::string& buf). If the metadatum does not have a value yet, then an AsciiValue is created. */ void setValue(const std::string& buf); /*! @brief Return a pointer to a copy (clone) of the value. The caller is responsible to delete this copy when it's no longer needed. This method is provided for users who need full control over the value. A caller may, e.g., downcast the pointer to the appropriate subclass of Value to make use of the interface of the subclass to set or modify its contents. @return A pointer to a copy (clone) of the value, 0 if the value is not set. */ Value* getValue() const { return value_ == 0 ? 0 : value_->clone(); } //! Return the name of the tag const char* tagName() const { return ExifTags::tagName(tag_, ifdId_); } //! Return the name of the type const char* typeName() const { return ExifTags::typeName(typeId()); } //! Return the size in bytes of one component of this type long typeSize() const { return ExifTags::typeSize(typeId()); } //! Return the name of the IFD const char* ifdName() const { return ExifTags::ifdName(ifdId_); } //! Return the related image item (image or thumbnail) const char* ifdItem() const { return ExifTags::ifdItem(ifdId_); } //! Return the name of the section const char* sectionName() const { return ExifTags::sectionName(tag_, ifdId_); } //! @name Accessors //@{ //! Return the tag uint16 tag() const { return tag_; } //! Return the type id. TypeId typeId() const { return value_ == 0 ? invalid : value_->typeId(); } //! Return the number of components in the value long count() const { return value_ == 0 ? 0 : value_->count(); } //! Return the size of the value in bytes long size() const { return value_ == 0 ? 0 : value_->size(); } /*! @brief Return the n-th component of the value. The return value is -1 if the value of the Metadatum is not set and the behaviour of the method is undefined if there is no n-th component. */ long toLong(long n =0) const { return value_ == 0 ? -1 : value_->toLong(n); } //! Return the value as a string. std::string toString() const { return value_ == 0 ? "" : value_->toString(); } /*! @brief Write value to a character data buffer and return the number of characters (bytes) written. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @param buf Data buffer to write to. @param byteOrder Applicable byte order (little or big endian). @return Number of characters written. */ long copy(char* buf, ByteOrder byteOrder) const { return value_ == 0 ? 0 : value_->copy(buf, byteOrder); } //! Return the IFD id IfdId ifdId() const { return ifdId_; } //! Return the position in the IFD (-1: not set) int ifdIdx() const { return ifdIdx_; } /*! @brief Return a constant reference to the value. This method is provided mostly for convenient and versatile output of the value which can (to some extent) be formatted through standard stream manipulators. Do not attempt to write to the value through this reference. Example:
@code ExifData::const_iterator i = exifData.findKey(key); if (i != exifData.end()) { std::cout << i->key() << " " << std::hex << i->value() << "\n"; } @endcode @return A constant reference to the value. @throw Error ("Value not set") if the value is not set. */ const Value& value() const { if (value_) return *value_; throw Error("Value not set"); } /*! @brief Return a unique key for the tag. The key is of the form 'ifdItem.sectionName.tagName'. */ std::string key() const { return key_; } //@} private: uint16 tag_; //!< Tag value IfdId ifdId_; //!< The IFD associated with this tag int ifdIdx_; //!< Position in the IFD (-1: not set) Value* value_; //!< Pointer to the value std::string key_; //!< Unique key }; // class Metadatum //! Container type to hold all metadata typedef std::vector Metadata; //! Unary predicate that matches a Metadatum with a given key class FindMetadatumByKey { public: //! Constructor, initializes the object with the tag to look for FindMetadatumByKey(const std::string& key) : key_(key) {} /*! @brief Returns true if the key of the argument metadatum is equal to that of the object. */ bool operator()(const Metadatum& metadatum) const { return key_ == metadatum.key(); } private: std::string key_; }; // class FindMetadatumByTag /*! @brief Simple structure for 'raw' IFD directory entries (without any data greater than four bytes) */ struct RawEntry { //! Default constructor RawEntry(); //! The IFD id IfdId ifdId_; //! Position in the IFD int ifdIdx_; //! Tag uint16 tag_; //! Type uint16 type_; //! Number of components uint32 count_; //! Offset, unprocessed uint32 offset_; //! Data from the IFD offset field if size is less or equal to four char offsetData_[4]; //! Size of the data in bytes long size_; }; // struct RawEntry //! Container type to hold 'raw' IFD directory entries typedef std::vector RawEntries; /*! @brief Data structure for one IFD directory entry. See the description of class Ifd for an explanation of the supported modes for memory allocation. */ class Entry { public: /*! @brief Default constructor. The entry allocates memory for its data if alloc is true (the default), otherwise it remembers just the pointers into a read and writeable data buffer which it doesn't allocate or delete. */ explicit Entry(bool alloc =true); /*! @brief Constructor to create an %Entry from a raw entry structure and a data buffer. @param e 'Raw' entry structure filled with the relevant data. The offset_ field will only be used if size_ is greater than four. @param buf Character buffer with the data of the tag. If size_ is less or equal four, the data from the original IFD offset field must be available in the field offsetData_. The buf is not needed in this case and can be 0. @param alloc Determines if memory management is required. If alloc is true, a data buffer will be allocated to store data of more than four bytes, else only the pointer will be stored. Data less or equal than four bytes is stored locally in the %Entry. */ Entry(const RawEntry& e, const char* buf, bool alloc =true); //! Destructor ~Entry(); //! Copy constructor Entry(const Entry& rhs); //! Assignment operator Entry& operator=(const Entry& rhs); //! @name Accessors //@{ //! Return the IFD id IfdId ifdId() const { return ifdId_; } //! Return the index in the IFD int ifdIdx() const { return ifdIdx_; } //! Return the tag uint16 tag() const { return tag_; } //! Return the type id. uint16 type() const { return type_; } //! Return the number of components in the value uint32 count() const { return count_; } //! Return the offset from the start of the IFD uint32 offset() const { return offset_; } //! Return the size of the value in bytes long size() const { return size_; } /*! @brief Return a pointer to the data area. Do not attempt to write to this pointer. */ const char* data() const; //@} //! Return the size in bytes of one element of this type long typeSize() const { return ExifTags::typeSize(TypeId(type_)); } //! Return the name of the type const char* typeName() const { return ExifTags::typeName(TypeId(type_)); } /*! @brief Set the offset. If the size of the data is not greater than four, the offset is written into the offset field as an unsigned long using the byte order given to encode it. */ void setOffset(uint32 offset, ByteOrder byteOrder); /*! @brief Set type, count and the data to that of value. @throw Error ("Size too large") if no memory allocation is allowed and the size of the data of value is larger than that available for the data of the entry. */ void setValue(const Value& value, ByteOrder byteOrder); private: /*! @brief True: Requires memory allocation and deallocation,
False: No memory management needed. */ bool alloc_; IfdId ifdId_; // Redundant IFD id (it is also at the IFD) int ifdIdx_; // Position in the IFD uint16 tag_; // Tag uint16 type_; // Type uint32 count_; // Number of components uint32 offset_; // Offset from the start of the IFD, // 0 if size <=4, i.e., if there is no offset char offsetData_[4]; // Data from the offset field if size <= 4 long size_; // Size of the data in bytes char* data_; // Pointer to the data buffer }; // class Entry //! Container type to hold all IFD directory entries typedef std::vector Entries; //! Unary predicate that matches an Entry with a given tag class FindEntryByTag { public: //! Constructor, initializes the object with the tag to look for FindEntryByTag(uint16 tag) : tag_(tag) {} /*! @brief Returns true if the tag of the argument entry is equal to that of the object. */ bool operator()(const Entry& entry) const { return tag_ == entry.tag(); } private: uint16 tag_; }; // class FindEntryByTag /*! @brief Models an IFD (Image File Directory) This class operates in two modes, one that allocates and deallocates the memory required to store the data, and one that doesn't perform such memory management and which is suitable in the case where a global data buffer is available and only pointers into this buffer need to be remembered. Note that the different modes imply completely different copy and assignment behaviours, with the first resulting in entirely separate classes and the second mode resulting in multiple classes using one and the same data buffer. Use the default mode (with memory management) if possible.
The mode without memory management is used to make "non-intrusive write support" possible. This allows writing to %Exif data of an image without changing the data layout of the %Exif data, to maximize chances that tag data, which the %Exif reader may not understand (e.g., the Makernote) remains valid. A "non-intrusive write operation" is the modification of tag data without increasing the data size. */ class Ifd { public: /*! @brief Constructor. Allows to set the IFD identifier and choose whether or not memory management is required for the Entries. */ explicit Ifd(IfdId ifdId =ifdIdNotSet, uint32 offset =0, bool alloc =true); //! Entries const iterator type typedef Entries::const_iterator const_iterator; //! Entries iterator type typedef Entries::iterator iterator; //! The first entry const_iterator begin() const { return entries_.begin(); } //! End of the entries const_iterator end() const { return entries_.end(); } //! The first entry iterator begin() { return entries_.begin(); } //! End of the entries iterator end() { return entries_.end(); } //! Find an IFD entry by tag, return a const iterator into the entries list const_iterator findTag(uint16 tag) const; //! Find an IFD entry by tag, return an iterator into the entries list iterator findTag(uint16 tag); //! Sort the IFD entries by tag void sortByTag(); //! Delete the directory entry with the given tag void erase(uint16 tag); //! Delete the directory entry at iterator position pos void erase(iterator pos); /*! @brief Set the offset of the entry identified by tag. If no entry with this tag exists, an entry of type unsigned long with one component is created. If the size of the data is greater than four, the offset of the entry is set to the value provided in offset, else it is written to the offset field of the entry as an unsigned long, encoded according to the byte order. */ void setOffset(uint16 tag, uint32 offset, ByteOrder byteOrder); //! Set the offset of the next IFD void setNext(uint32 next) { next_ = next; } /*! @brief Add all metadata in the range from iterator position begin to iterator position end, which have an IFD id matching that of this IFD to the list of directory entries. Checks for duplicates: if an entry with the same tag already exists, the entry is overwritten. */ void add(Metadata::const_iterator begin, Metadata::const_iterator end, ByteOrder byteOrder); /*! @brief Add the metadatum to the list of directory entries. Does not check for a matching IFD id. Checks for duplicates: if an entry with the same tag already exists, the entry is overwritten. */ void add(const Metadatum& metadatum, ByteOrder byteOrder); /*! @brief Read a complete IFD and its data from a data buffer @param buf Pointer to the data to decode. The buffer must start with the IFD data (unlike the readSubIfd() method). @param byteOrder Applicable byte order (little or big endian). @param offset (Optional) offset of the IFD from the start of the TIFF header, if known. If not given, the offset will be guessed using the assumption that the smallest offset of all IFD directory entries points to a data buffer immediately follwing the IFD. @return 0 if successful */ int read(const char* buf, ByteOrder byteOrder, long offset =0); /*! @brief Read a sub-IFD from the location pointed to by the directory entry with the given tag. @param dest References the destination IFD. @param buf The data buffer to read from. The buffer must contain all Exif data starting from the TIFF header (unlike the read() method). @param byteOrder Applicable byte order (little or big endian). @param tag Tag to look for. @return 0 if successful */ int readSubIfd( Ifd& dest, const char* buf, ByteOrder byteOrder, uint16 tag ) const; /*! @brief Copy the IFD to a data array, return the number of bytes written. First the number of IFD entries is written (2 bytes), followed by all directory entries: tag (2), type (2), number of data components (4) and offset to the data or the data, if it occupies not more than four bytes (4). The directory entries are followed by the offset of the next IFD (4). All these fields are encoded according to the byte order argument. Data that doesn't fit into the offset fields follows immediately after the IFD entries. The offsets in the IFD are set to correctly point to the data fields, using the offset parameter or the offset of the IFD. @param buf Pointer to the data buffer. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @param byteOrder Applicable byte order (little or big endian). @param offset Target offset from the start of the TIFF header of the data array. The IFD offsets will be adjusted as necessary. If not given, then it is assumed that the IFD will remain at its original position, i.e., the offset of the IFD will be used. @return Returns the number of characters written. */ long copy(char* buf, ByteOrder byteOrder, long offset =0) const; //! @name Accessors //@{ //! Ifd id of the IFD IfdId ifdId() const { return ifdId_; } //! Offset of the IFD from SOI long offset() const { return offset_; } //! Get the offset to the next IFD from the start of the TIFF header long next() const { return next_; } //@} //! Get the size of this IFD in bytes (IFD only, without data) long size() const; /*! @brief Return the total size of the data of this IFD in bytes, sums the size of all directory entries where size is greater than four (i.e., only data that requires memory outside the IFD directory entries is counted). */ long dataSize() const; /*! @brief Print the IFD in human readable format to the given stream; begin each line with prefix. */ void print(std::ostream& os, const std::string& prefix ="") const; private: const bool alloc_; // True: requires memory allocation and deallocation, // False: no memory management needed. Entries entries_; // IFD entries IfdId ifdId_; // IFD Id long offset_; // offset of the IFD from the start of TIFF header long next_; // offset of next IFD from the start of the TIFF header }; // class Ifd //! %Thumbnail data Todo: add, create, rotate, delete class Thumbnail { public: //! Default constructor Thumbnail(); //! Destructor ~Thumbnail(); //! Copy constructor Thumbnail(const Thumbnail& rhs); //! Assignment operator Thumbnail& operator=(const Thumbnail& rhs); //! %Thumbnail image types enum Type { none, jpeg, tiff }; /*! @brief Read the thumbnail from the data buffer buf, using %Exif metadata exifData. Return 0 if successful. @param buf Data buffer containing the thumbnail data. The buffer must start with the TIFF header. @param exifData %Exif data corresponding to the data buffer. @param byteOrder The byte order used for the encoding of TIFF thumbnails. It determines the byte order of the resulting thumbnail image, if it is in TIFF format. For JPEG thumbnails the byte order is not used. @return 0 if successful
-1 if there is no thumbnail image according to the %Exif data
1 in case of inconsistent JPEG thumbnail %Exif data
2 in case of inconsistent TIFF thumbnail %Exif data
*/ int read(const char* buf, const ExifData& exifData, ByteOrder byteOrder =littleEndian); /*! @brief Write thumbnail to file path, return 0 if successful, -1 if there is no thumbnail image to write. */ int write(const std::string& path) const; /*! @brief Copy the thumbnail image data (without the IFD, if any) to the data buffer buf. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. Return the number of characters written. */ long copy(char* buf) const; /*! @brief Return the size of the thumbnail data (data only, without the IFD, in case of a TIFF thumbnail. */ long size() const; /*! @brief Update the %Exif data according to the actual thumbnail image. If the type of the thumbnail image is JPEG, JPEGInterchangeFormat is set to 0. If the type is TIFF, StripOffsets are set to the offsets of the IFD of the thumbnail image itself. */ void update(ExifData& exifData) const; /*! @brief Update the thumbnail data offsets in IFD1 assuming the thumbnail data follows immediately after IFD1. If the type of the thumbnail image is JPEG, JPEGInterchangeFormat is set to point directly behind the data area of IFD1. If the type is TIFF, StripOffsets from the thumbnail image are adjusted to point to the strips, which have to follow immediately after IFD1. Use copy() to write the thumbnail image data. The offset of IFD1 must be set correctly. Changing the size of IFD1 invalidates the thumbnail data offsets set by this method. */ void setOffsets(Ifd& ifd1, ByteOrder byteOrder) const; private: //! Read a compressed (JPEG) thumbnail image from the data buffer int readJpegImage(const char* buf, const ExifData& exifData); //! Read an uncompressed (TIFF) thumbnail image from the data buffer int readTiffImage(const char* buf, const ExifData& exifData, ByteOrder byteOrder); //! Update the Exif data according to the actual JPEG thumbnail image void updateJpegImage(ExifData& exifData) const; //! Update the Exif data according to the actual TIFF thumbnail image void updateTiffImage(ExifData& exifData) const; //! Copy the JPEG thumbnail image data to the data buffer buf long copyJpegImage(char* buf) const; //! Copy the TIFF thumbnail image data to the data buffer buf long copyTiffImage(char* buf) const; //! Update the offsets to the JPEG thumbnail image in the IFD void setJpegImageOffsets(Ifd& ifd1, ByteOrder byteOrder) const; //! Update the offsets to the TIFF thumbnail image in the IFD void setTiffImageOffsets(Ifd& ifd1, ByteOrder byteOrder) const; Type type_; // Type of thumbnail image long size_; // Size of the image data char* image_; // Thumbnail image data TiffHeader tiffHeader_; // Thumbnail TIFF Header, only for TIFF thumbs Ifd ifd_; // Thumbnail IFD, only for TIFF thumbnails }; // class Thumbnail /*! @brief A container for %Exif data Contains the %Exif data of a JPEG image - read and write access to all tags and data - iterators to access the %Exif data - decoding and encoding through the stream interface - human readable output - XML input and output - access to thumbnail (write, delete, re-calculate) Todo: - A constructor which creates a minimal valid set of %Exif data */ class ExifData { public: //! Default constructor ExifData(); //! Destructor ~ExifData(); /*! @brief Read the %Exif data from file path. @param path Path to the file @return 0 if successful
the return code of readExifData(std::istream& is) if the call to this function fails
the return code of read(const char* buf, long len) if the call to this function fails
*/ int read(const std::string& path); /*! @brief Read the %Exif data from a character buffer. The data buffer must start with the TIFF header. @param buf Pointer to the data buffer to read from @param len Number of bytes in the data buffer @return 0 if successful */ int read(const char* buf, long len); /*! @brief Write the %Exif data to file path. If an %Exif data section already exists in the file, it is replaced. Otherwise, an %Exif data section is created. See copy(char* buf) for further details. @return 0 if successful. */ int write(const std::string& path); /*! @brief Write the %Exif data to a data buffer, return number of bytes written. The copied data starts with the TIFF header. Tries to update the original data buffer and write it back with minimal changes, in a 'non-intrusive' fashion, if possible. In this case, tag data that ExifData does not understand stand a good chance to remain valid. (In particular, if the %Exif data contains a Makernote in IFD format, the offsets in its IFD will remain valid.)
If 'non-intrusive' writing is not possible, the Exif data will be re-built from scratch, in which case the absolute position of the metadata entries within the data buffer may (and in most cases will) be different from their original position. Furthermore, in this case, the Exif data is updated with the metadata from the actual thumbnail image (overriding existing metadata). @param buf The data buffer to write to. The user must ensure that the buffer has enough memory. Otherwise the call results in undefined behaviour. @return Number of characters written to the buffer. */ long copy(char* buf); /*! @brief Return the approximate size of all %Exif data (TIFF header plus metadata). The number returned may be bigger than the actual size of the %Exif data, but it is never smaller. Only copy() returns the exact size. */ long size() const; //! Returns the byte order as specified in the TIFF header ByteOrder byteOrder() const { return tiffHeader_.byteOrder(); } /*! @brief Add all IFD entries in the range from iterator position begin to iterator position end to the %Exif metadata. Checks for duplicates: if a metadatum already exists, its value is overwritten. */ void add(Ifd::const_iterator begin, Ifd::const_iterator end, ByteOrder byteOrder); /*! @brief Add a metadatum from the supplied key and value pair. This method copies (clones) the value. If a metadatum with the given key already exists, its value is overwritten and no new metadatum is added. */ void add(const std::string& key, Value* value); /*! @brief Add a copy of the metadatum to the %Exif metadata. If a metadatum with the given key already exists, its value is overwritten and no new metadatum is added. */ void add(const Metadatum& metadatum); //! Metadata iterator type typedef Metadata::iterator iterator; //! Metadata const iterator type typedef Metadata::const_iterator const_iterator; //! Begin of the metadata const_iterator begin() const { return metadata_.begin(); } //! End of the metadata const_iterator end() const { return metadata_.end(); } //! Begin of the metadata iterator begin() { return metadata_.begin(); } //! End of the metadata iterator end() { return metadata_.end(); } //! Find a metadatum by its key, return an iterator to it iterator findKey(const std::string& key); //! Find a metadatum by its key, return a const iterator to it const_iterator findKey(const std::string& key) const; //! Sort metadata by key void sortByKey(); //! Sort metadata by tag void sortByTag(); //! Delete the metadatum with a given key void erase(const std::string& key); //! Delete the metadatum at iterator position pos void erase(iterator pos); /*! @brief Write the thumbnail image to a file. The filename extension will be set according to the image type of the thumbnail, so the path should not include an extension. */ int writeThumbnail(const std::string& path) const { return thumbnail_.write(path); } private: // Return a pointer to the internal IFD identified by its IFD id const Ifd* getIfd(IfdId ifdId) const; /* Check if the metadata changed and update the internal IFDs if the changes are compatible with the existing data (non-intrusive write support). Return true if only compatible changes were detected in the metadata and the internal IFDs (i.e., data buffer) were updated successfully. Return false, if non-intrusive writing is not possible. The internal IFDs and the data buffer may or may not be modified in this case. */ bool updateIfds(); /* Check if the metadata is compatible with the internal IFDs for non-intrusive writing. Return true if compatible, false if not. Note: This function does not detect deleted metadata as incompatible, although the deletion of metadata is not (yet) a supported non-intrusive write operation. */ bool compatible() const; /* Write Exif data to a data buffer the hard way, return number of bytes written. Rebuilds the Exif data from scratch, using the TIFF header, metadata container and thumbnail. In particular, the internal IFDs and the original data buffer are not used. Furthermore, this method updates the Exif data with the metadata from the actual thumbnail image (overriding existing metadata). */ long copyFromMetadata(char* buf); TiffHeader tiffHeader_; Metadata metadata_; Thumbnail thumbnail_; Ifd ifd0_; Ifd exifIfd_; Ifd iopIfd_; Ifd gpsIfd_; Ifd ifd1_; bool valid_; // Flag if data buffer is valid long size_; // Size of the Exif raw data in bytes char* data_; // Exif raw data buffer }; // class ExifData // ***************************************************************************** // free functions //! Read a 2 byte unsigned short value from the data buffer uint16 getUShort(const char* buf, ByteOrder byteOrder); //! Read a 4 byte unsigned long value from the data buffer uint32 getULong(const char* buf, ByteOrder byteOrder); //! Read an 8 byte unsigned rational value from the data buffer URational getURational(const char* buf, ByteOrder byteOrder); //! Read a 2 byte signed short value from the data buffer int16 getShort(const char* buf, ByteOrder byteOrder); //! Read a 4 byte signed long value from the data buffer int32 getLong(const char* buf, ByteOrder byteOrder); //! Read an 8 byte signed rational value from the data buffer Rational getRational(const char* buf, ByteOrder byteOrder); /*! @brief Convert an unsigned short to data, write the data to the buffer, return number of bytes written. */ long us2Data(char* buf, uint16 s, ByteOrder byteOrder); /*! @brief Convert an unsigned long to data, write the data to the buffer, return number of bytes written. */ long ul2Data(char* buf, uint32 l, ByteOrder byteOrder); /*! @brief Convert an unsigned rational to data, write the data to the buffer, return number of bytes written. */ long ur2Data(char* buf, URational l, ByteOrder byteOrder); /*! @brief Convert a signed short to data, write the data to the buffer, return number of bytes written. */ long s2Data(char* buf, int16 s, ByteOrder byteOrder); /*! @brief Convert a signed long to data, write the data to the buffer, return number of bytes written. */ long l2Data(char* buf, int32 l, ByteOrder byteOrder); /*! @brief Convert a signed rational to data, write the data to the buffer, return number of bytes written. */ long r2Data(char* buf, Rational l, ByteOrder byteOrder); //! Print len bytes from buf in hex and ASCII format to the given stream void hexdump(std::ostream& os, const char* buf, long len); /*! @brief Compare two 'raw' IFD entries by offset, taking care of special cases where one or both of the entries don't have an offset. Return true if the offset of entry lhs is less than that of rhs, else false. By definition, entries without an offset are greater than those with an offset. */ bool cmpRawEntriesByOffset(const RawEntry& lhs, const RawEntry& rhs); /*! @brief Compare two IFD entries by tag. Return true if the tag of entry lhs is less than that of rhs. */ bool cmpEntriesByTag(const Entry& lhs, const Entry& rhs); /*! @brief Compare two metadata by tag. Return true if the tag of metadatum lhs is less than that of rhs. */ bool cmpMetadataByTag(const Metadatum& lhs, const Metadatum& rhs); /*! @brief Compare two metadata by key. Return true if the key of metadatum lhs is less than that of rhs. */ bool cmpMetadataByKey(const Metadatum& lhs, const Metadatum& rhs); // ***************************************************************************** // template and inline definitions /*! @brief Read a value of type T from the data buffer. We need this template function for the ValueType template classes. There are only specializations of this function available; no default implementation is provided. @param buf Pointer to the data buffer to read from. @param byteOrder Applicable byte order (little or big endian). @return A value of type T. */ template T getValue(const char* buf, ByteOrder byteOrder); // Specialization for a 2 byte unsigned short value. template<> inline uint16 getValue(const char* buf, ByteOrder byteOrder) { return getUShort(buf, byteOrder); } // Specialization for a 4 byte unsigned long value. template<> inline uint32 getValue(const char* buf, ByteOrder byteOrder) { return getULong(buf, byteOrder); } // Specialization for an 8 byte unsigned rational value. template<> inline URational getValue(const char* buf, ByteOrder byteOrder) { return getURational(buf, byteOrder); } // Specialization for a 2 byte signed short value. template<> inline int16 getValue(const char* buf, ByteOrder byteOrder) { return getShort(buf, byteOrder); } // Specialization for a 4 byte signed long value. template<> inline int32 getValue(const char* buf, ByteOrder byteOrder) { return getLong(buf, byteOrder); } // Specialization for an 8 byte signed rational value. template<> inline Rational getValue(const char* buf, ByteOrder byteOrder) { return getRational(buf, byteOrder); } /*! @brief Convert a value of type T to data, write the data to the data buffer. We need this template function for the ValueType template classes. There are only specializations of this function available; no default implementation is provided. @param buf Pointer to the data buffer to write to. @param t Value to be converted. @param byteOrder Applicable byte order (little or big endian). @return The number of bytes written to the buffer. */ template long toData(char* buf, T t, ByteOrder byteOrder); /*! @brief Specialization to write an unsigned short to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, uint16 t, ByteOrder byteOrder) { return us2Data(buf, t, byteOrder); } /*! @brief Specialization to write an unsigned long to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, uint32 t, ByteOrder byteOrder) { return ul2Data(buf, t, byteOrder); } /*! @brief Specialization to write an unsigned rational to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, URational t, ByteOrder byteOrder) { return ur2Data(buf, t, byteOrder); } /*! @brief Specialization to write a signed short to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, int16 t, ByteOrder byteOrder) { return s2Data(buf, t, byteOrder); } /*! @brief Specialization to write a signed long to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, int32 t, ByteOrder byteOrder) { return l2Data(buf, t, byteOrder); } /*! @brief Specialization to write a signed rational to the data buffer. Return the number of bytes written. */ template<> inline long toData(char* buf, Rational t, ByteOrder byteOrder) { return r2Data(buf, t, byteOrder); } template void ValueType::read(const char* buf, long len, ByteOrder byteOrder) { value_.clear(); for (long i = 0; i < len; i += ExifTags::typeSize(typeId())) { value_.push_back(getValue(buf + i, byteOrder)); } } template void ValueType::read(const std::string& buf) { std::istringstream is(buf); T tmp; value_.clear(); while (is >> tmp) { value_.push_back(tmp); } } template long ValueType::copy(char* buf, ByteOrder byteOrder) const { long offset = 0; typename ValueList::const_iterator end = value_.end(); for (typename ValueList::const_iterator i = value_.begin(); i != end; ++i) { offset += toData(buf + offset, *i, byteOrder); } return offset; } template long ValueType::size() const { return ExifTags::typeSize(typeId()) * value_.size(); } template Value* ValueType::clone() const { return new ValueType(*this); } template std::ostream& ValueType::write(std::ostream& os) const { typename ValueList::const_iterator end = value_.end(); typename ValueList::const_iterator i = value_.begin(); while (i != end) { os << *i; if (++i != end) os << " "; } return os; } // Default implementation template inline long ValueType::toLong(long n) const { return value_[n]; } // Specialization for rational template<> inline long ValueType::toLong(long n) const { return value_[n].first / value_[n].second; } // Specialization for unsigned rational template<> inline long ValueType::toLong(long n) const { return value_[n].first / value_[n].second; } } // namespace Exif #endif // #ifndef EXIF_HPP_