// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004-2021 Exiv2 authors * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA. */ // ***************************************************************************** // included header files #include "config.h" #include "jpgimage.hpp" #include "tiffimage.hpp" #include "image_int.hpp" #include "error.hpp" #include "futils.hpp" #include "helper_functions.hpp" #include "enforce.hpp" #include "safe_op.hpp" #ifdef WIN32 #include #else #define BYTE char #define USHORT uint16_t #define ULONG uint32_t #endif #include "fff.h" // + standard includes #include // for EOF #include #include #include #include // ***************************************************************************** // class member definitions namespace Exiv2 { constexpr byte JpegBase::dht_ = 0xc4; constexpr byte JpegBase::dqt_ = 0xdb; constexpr byte JpegBase::dri_ = 0xdd; constexpr byte JpegBase::sos_ = 0xda; constexpr byte JpegBase::eoi_ = 0xd9; constexpr byte JpegBase::app0_ = 0xe0; constexpr byte JpegBase::app1_ = 0xe1; constexpr byte JpegBase::app2_ = 0xe2; constexpr byte JpegBase::app13_ = 0xed; constexpr byte JpegBase::com_ = 0xfe; // Start of Frame markers, nondifferential Huffman-coding frames constexpr byte JpegBase::sof0_ = 0xc0; // start of frame 0, baseline DCT constexpr byte JpegBase::sof1_ = 0xc1; // start of frame 1, extended sequential DCT, Huffman coding constexpr byte JpegBase::sof2_ = 0xc2; // start of frame 2, progressive DCT, Huffman coding constexpr byte JpegBase::sof3_ = 0xc3; // start of frame 3, lossless sequential, Huffman coding // Start of Frame markers, differential Huffman-coding frames constexpr byte JpegBase::sof5_ = 0xc5; // start of frame 5, differential sequential DCT, Huffman coding constexpr byte JpegBase::sof6_ = 0xc6; // start of frame 6, differential progressive DCT, Huffman coding constexpr byte JpegBase::sof7_ = 0xc7; // start of frame 7, differential lossless, Huffman coding // Start of Frame markers, nondifferential arithmetic-coding frames constexpr byte JpegBase::sof9_ = 0xc9; // start of frame 9, extended sequential DCT, arithmetic coding constexpr byte JpegBase::sof10_ = 0xca; // start of frame 10, progressive DCT, arithmetic coding constexpr byte JpegBase::sof11_ = 0xcb; // start of frame 11, lossless sequential, arithmetic coding // Start of Frame markers, differential arithmetic-coding frames constexpr byte JpegBase::sof13_ = 0xcd; // start of frame 13, differential sequential DCT, arithmetic coding constexpr byte JpegBase::sof14_ = 0xce; // start of frame 14, progressive DCT, arithmetic coding constexpr byte JpegBase::sof15_ = 0xcf; // start of frame 15, differential lossless, arithmetic coding constexpr const char* JpegBase::exifId_ = "Exif\0\0"; constexpr const char* JpegBase::jfifId_ = "JFIF\0"; constexpr const char* JpegBase::xmpId_ = "http://ns.adobe.com/xap/1.0/\0"; constexpr const char* JpegBase::iccId_ = "ICC_PROFILE\0"; constexpr const char* Photoshop::ps3Id_ = "Photoshop 3.0\0"; constexpr std::array Photoshop::irbId_{"8BIM", "AgHg", "DCSR", "PHUT"}; constexpr const char* Photoshop::bimId_ = "8BIM"; // deprecated constexpr uint16_t Photoshop::iptc_ = 0x0404; constexpr uint16_t Photoshop::preview_ = 0x040c; // BasicIo::read() with error checking static void readOrThrow(BasicIo& iIo, byte* buf, long rcount, ErrorCode err) { const long nread = iIo.read(buf, rcount); enforce(nread == rcount, err); enforce(!iIo.error(), err); } // BasicIo::seek() with error checking static void seekOrThrow(BasicIo& iIo, long offset, BasicIo::Position pos, ErrorCode err) { const int r = iIo.seek(offset, pos); enforce(r == 0, err); } static inline bool inRange(int lo,int value, int hi) { return lo<=value && value <= hi; } static inline bool inRange2(int value,int lo1,int hi1, int lo2,int hi2) { return inRange(lo1,value,hi1) || inRange(lo2,value,hi2); } bool Photoshop::isIrb(const byte* pPsData, long sizePsData) { if (sizePsData < 4) return false; for (auto&& i : irbId_) { assert(strlen(i) == 4); if (memcmp(pPsData, i, 4) == 0) return true; } return false; } bool Photoshop::valid(const byte* pPsData, long sizePsData) { const byte* record = nullptr; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; const byte* pCur = pPsData; const byte* pEnd = pPsData + sizePsData; int ret = 0; while (pCur < pEnd && 0 == (ret = Photoshop::locateIptcIrb(pCur, static_cast(pEnd - pCur), &record, &sizeHdr, &sizeIptc))) { pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1); } return ret >= 0; } // Todo: Generalised from JpegBase::locateIptcData without really understanding // the format (in particular the header). So it remains to be confirmed // if this also makes sense for psTag != Photoshop::iptc int Photoshop::locateIrb(const byte* pPsData, long sizePsData, uint16_t psTag, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { assert(record); assert(sizeHdr); assert(sizeData); // Used for error checking long position = 0; #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Photoshop::locateIrb: "; #endif // Data should follow Photoshop format, if not exit while (position <= sizePsData - 12 && isIrb(pPsData + position, 4)) { const byte *hrd = pPsData + position; position += 4; uint16_t type = getUShort(pPsData + position, bigEndian); position += 2; #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "0x" << std::hex << type << std::dec << " "; #endif // Pascal string is padded to have an even size (including size byte) byte psSize = pPsData[position] + 1; psSize += (psSize & 1); position += psSize; if (position + 4 > sizePsData) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid or extended Photoshop IRB\n"; #endif return -2; } uint32_t dataSize = getULong(pPsData + position, bigEndian); position += 4; if (dataSize > static_cast(sizePsData - position)) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid Photoshop IRB data size " << dataSize << " or extended Photoshop IRB\n"; #endif return -2; } #ifdef EXIV2_DEBUG_MESSAGES if ( (dataSize & 1) && position + dataSize == static_cast(sizePsData)) { std::cerr << "Warning: " << "Photoshop IRB data is not padded to even size\n"; } #endif if (type == psTag) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "ok\n"; #endif *sizeData = dataSize; *sizeHdr = psSize + 10; *record = hrd; return 0; } // Data size is also padded to be even position += dataSize + (dataSize & 1); } #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "pPsData doesn't start with '8BIM'\n"; #endif if (position < sizePsData) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Warning: " << "Invalid or extended Photoshop IRB\n"; #endif return -2; } return 3; } // Photoshop::locateIrb int Photoshop::locateIptcIrb(const byte* pPsData, long sizePsData, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { return locateIrb(pPsData, sizePsData, iptc_, record, sizeHdr, sizeData); } int Photoshop::locatePreviewIrb(const byte* pPsData, long sizePsData, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { return locateIrb(pPsData, sizePsData, preview_, record, sizeHdr, sizeData); } DataBuf Photoshop::setIptcIrb(const byte* pPsData, long sizePsData, const IptcData& iptcData) { if (sizePsData > 0) assert(pPsData); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "IRB block at the beginning of Photoshop::setIptcIrb\n"; if (sizePsData == 0) std::cerr << " None.\n"; else hexdump(std::cerr, pPsData, sizePsData); #endif const byte* record = pPsData; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; DataBuf rc; // Safe to call with zero psData.size_ if (0 > Photoshop::locateIptcIrb(pPsData, sizePsData, &record, &sizeHdr, &sizeIptc)) { return rc; } Blob psBlob; const auto sizeFront = static_cast(record - pPsData); // Write data before old record. if (sizePsData > 0 && sizeFront > 0) { append(psBlob, pPsData, sizeFront); } // Write new iptc record if we have it DataBuf rawIptc = IptcParser::encode(iptcData); if (rawIptc.size_ > 0) { byte tmpBuf[12]; std::memcpy(tmpBuf, Photoshop::irbId_[0], 4); us2Data(tmpBuf + 4, iptc_, bigEndian); tmpBuf[6] = 0; tmpBuf[7] = 0; ul2Data(tmpBuf + 8, rawIptc.size_, bigEndian); append(psBlob, tmpBuf, 12); append(psBlob, rawIptc.pData_, rawIptc.size_); // Data is padded to be even (but not included in size) if (rawIptc.size_ & 1) psBlob.push_back(0x00); } // Write existing stuff after record, // skip the current and all remaining IPTC blocks long pos = sizeFront; while (0 == Photoshop::locateIptcIrb(pPsData + pos, sizePsData - pos, &record, &sizeHdr, &sizeIptc)) { const long newPos = static_cast(record - pPsData); // Copy data up to the IPTC IRB if (newPos > pos) { append(psBlob, pPsData + pos, newPos - pos); } // Skip the IPTC IRB pos = newPos + sizeHdr + sizeIptc + (sizeIptc & 1); } if (pos < sizePsData) { append(psBlob, pPsData + pos, sizePsData - pos); } // Data is rounded to be even if (!psBlob.empty()) rc = DataBuf(&psBlob[0], static_cast(psBlob.size())); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "IRB block at the end of Photoshop::setIptcIrb\n"; if (rc.size_ == 0) std::cerr << " None.\n"; else hexdump(std::cerr, rc.pData_, rc.size_); #endif return rc; } // Photoshop::setIptcIrb bool JpegBase::markerHasLength(byte marker) { return (marker >= sof0_ && marker <= sof15_) || (marker >= app0_ && marker <= (app0_ | 0x0F)) || marker == dht_ || marker == dqt_ || marker == dri_ || marker == com_ || marker == sos_; } JpegBase::JpegBase(int type, BasicIo::UniquePtr io, bool create, const byte initData[], long dataSize) : Image(type, mdExif | mdIptc | mdXmp | mdComment, std::move(io)) { if (create) { initImage(initData, dataSize); } } int JpegBase::initImage(const byte initData[], long dataSize) { if (io_->open() != 0) { return 4; } IoCloser closer(*io_); if (io_->write(initData, dataSize) != dataSize) { return 4; } return 0; } byte JpegBase::advanceToMarker(ErrorCode err) const { int c = -1; // Skips potential padding between markers while ((c=io_->getb()) != 0xff) { if (c == EOF) throw Error(err); } // Markers can start with any number of 0xff while ((c=io_->getb()) == 0xff) { } if (c == EOF) throw Error(err); return static_cast(c); } void JpegBase::readMetadata() { int rc = 0; // Todo: this should be the return value if (io_->open() != 0) throw Error(kerDataSourceOpenFailed, io_->path(), strError()); IoCloser closer(*io_); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); throw Error(kerNotAJpeg); } clearMetadata(); int search = 6 ; // Exif, ICC, XMP, Comment, IPTC, SOF Blob psBlob; bool foundCompletePsData = false; bool foundExifData = false; bool foundXmpData = false; bool foundIccData = false; // Read section marker byte marker = advanceToMarker(kerNotAJpeg); while (marker != sos_ && marker != eoi_ && search > 0) { // 2-byte buffer for reading the size. byte sizebuf[2]; uint16_t size = 0; if (markerHasLength(marker)) { readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData); size = getUShort(sizebuf, bigEndian); // `size` is the size of the segment, including the 2-byte size field // that we just read. enforce(size >= 2, kerFailedToReadImageData); } // Read the rest of the segment. DataBuf buf(size); if (size > 0) { readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData); memcpy(buf.pData_, sizebuf, 2); } if ( !foundExifData && marker == app1_ && size >= 8 // prevent out-of-bounds read in memcmp on next line && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { ByteOrder bo = ExifParser::decode(exifData_, buf.pData_ + 8, size - 8); setByteOrder(bo); if (size > 8 && byteOrder() == invalidByteOrder) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode Exif metadata.\n"; #endif exifData_.clear(); } --search; foundExifData = true; } else if ( !foundXmpData && marker == app1_ && size >= 31 // prevent out-of-bounds read in memcmp on next line && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { xmpPacket_.assign(reinterpret_cast(buf.pData_ + 31), size - 31); if (!xmpPacket_.empty() && XmpParser::decode(xmpData_, xmpPacket_)) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode XMP metadata.\n"; #endif } --search; foundXmpData = true; } else if ( !foundCompletePsData && marker == app13_ && size >= 16 // prevent out-of-bounds read in memcmp on next line && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found app13 segment, size = " << size << "\n"; //hexdump(std::cerr, psData.pData_, psData.size_); #endif // Append to psBlob append(psBlob, buf.pData_ + 16, size - 16); // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(&psBlob[0], static_cast(psBlob.size()))) { --search; foundCompletePsData = true; } } else if (marker == com_ && comment_.empty()) { // JPEGs can have multiple comments, but for now only read // the first one (most jpegs only have one anyway). Comments // are simple single byte ISO-8859-1 strings. comment_.assign(reinterpret_cast(buf.pData_ + 2), size - 2); while ( comment_.length() && comment_.at(comment_.length()-1) == '\0') { comment_.erase(comment_.length()-1); } --search; } else if ( marker == app2_ && size >= 13 // prevent out-of-bounds read in memcmp on next line && memcmp(buf.pData_ + 2, iccId_,11)==0) { if (size < 2+14+4) { rc = 8; break; } // ICC profile if ( ! foundIccData ) { foundIccData = true ; --search ; } int chunk = static_cast(buf.pData_[2 + 12]); int chunks = static_cast(buf.pData_[2 + 13]); // ICC1v43_2010-12.pdf header is 14 bytes // header = "ICC_PROFILE\0" (12 bytes) // chunk/chunks are a single byte // Spec 7.2 Profile bytes 0-3 size uint32_t s = getULong(buf.pData_ + (2+14) , bigEndian); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found ICC Profile chunk " << chunk << " of " << chunks << (chunk==1 ? " size: " : "" ) << (chunk==1 ? s : 0) << std::endl ; #endif // #1286 profile can be padded long icc_size = size-2-14; if (chunk==1 && chunks==1) { enforce(s <= static_cast(icc_size), kerInvalidIccProfile); icc_size = s; } DataBuf profile(Safe::add(iccProfile_.size_, icc_size)); if ( iccProfile_.size_ ) { ::memcpy(profile.pData_,iccProfile_.pData_,iccProfile_.size_); } ::memcpy(profile.pData_+iccProfile_.size_, buf.pData_ + (2+14), icc_size); setIccProfile(profile,chunk==chunks); } else if ( pixelHeight_ == 0 && inRange2(marker,sof0_,sof3_,sof5_,sof15_) ) { // We hit a SOFn (start-of-frame) marker if (size < 8) { rc = 7; break; } pixelHeight_ = getUShort(buf.pData_ + 3, bigEndian); pixelWidth_ = getUShort(buf.pData_ + 5, bigEndian); if (pixelHeight_ != 0) --search; } // Read the beginning of the next segment try { marker = advanceToMarker(kerFailedToReadImageData); } catch (Error&) { rc = 5; break; } } // while there are segments to process if (!psBlob.empty()) { // Find actual IPTC data within the psBlob Blob iptcBlob; const byte* record = nullptr; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; const byte* pCur = &psBlob[0]; const byte* pEnd = pCur + psBlob.size(); while ( pCur < pEnd && 0 == Photoshop::locateIptcIrb(pCur, static_cast(pEnd - pCur), &record, &sizeHdr, &sizeIptc)) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found IPTC IRB, size = " << sizeIptc << "\n"; #endif if (sizeIptc) { append(iptcBlob, record + sizeHdr, sizeIptc); } pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1); } if (!iptcBlob.empty() && IptcParser::decode(iptcData_, &iptcBlob[0], static_cast(iptcBlob.size()))) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode IPTC metadata.\n"; #endif iptcData_.clear(); } } // psBlob.size() > 0 if (rc != 0) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "JPEG format error, rc = " << rc << "\n"; #endif } } // JpegBase::readMetadata #define REPORT_MARKER if ( (option == kpsBasic||option == kpsRecursive) ) \ out << Internal::stringFormat("%8ld | 0xff%02x %-5s", \ io_->tell()-2,marker,nm[marker].c_str()) void JpegBase::printStructure(std::ostream& out, PrintStructureOption option, int depth) { if (io_->open() != 0) throw Error(kerDataSourceOpenFailed, io_->path(), strError()); // Ensure that this is the correct image type if (!isThisType(*io_, false)) { if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData); throw Error(kerNotAJpeg); } bool bPrint = option == kpsBasic || option == kpsRecursive; std::vector iptcDataSegs; if (bPrint || option == kpsXMP || option == kpsIccProfile || option == kpsIptcErase) { // nmonic for markers std::string nm[256]; nm[0xd8] = "SOI"; nm[0xd9] = "EOI"; nm[0xda] = "SOS"; nm[0xdb] = "DQT"; nm[0xdd] = "DRI"; nm[0xfe] = "COM"; // 0xe0 .. 0xef are APPn // 0xc0 .. 0xcf are SOFn (except 4) nm[0xc4] = "DHT"; for (int i = 0; i <= 15; i++) { char MN[16]; snprintf(MN, sizeof(MN), "APP%d", i); nm[0xe0 + i] = MN; if (i != 4) { snprintf(MN, sizeof(MN), "SOF%d", i); nm[0xc0 + i] = MN; } } // Container for the signature bool bExtXMP = false; // Read section marker byte marker = advanceToMarker(kerNotAJpeg); bool done = false; bool first = true; while (!done) { // print marker bytes if (first && bPrint) { out << "STRUCTURE OF JPEG FILE: " << io_->path() << std::endl; out << " address | marker | length | data" << std::endl; REPORT_MARKER; } first = false; bool bLF = bPrint; // 2-byte buffer for reading the size. byte sizebuf[2]; uint16_t size = 0; if (markerHasLength(marker)) { readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData); size = getUShort(sizebuf, bigEndian); // `size` is the size of the segment, including the 2-byte size field // that we just read. enforce(size >= 2, kerFailedToReadImageData); } // Read the rest of the segment. DataBuf buf(size); if (size > 0) { assert(size >= 2); // enforced above readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData); memcpy(buf.pData_, sizebuf, 2); } if (bPrint && markerHasLength(marker)) out << Internal::stringFormat(" | %7d ", size); // print signature for APPn if (marker >= app0_ && marker <= (app0_ | 0x0F)) { assert(markerHasLength(marker)); assert(size >= 2); // Because this marker has a length field. // http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf p75 const std::string signature = string_from_unterminated(reinterpret_cast(buf.pData_ + 2), size - 2); // 728 rmills@rmillsmbp:~/gnu/exiv2/ttt $ exiv2 -pS test/data/exiv2-bug922.jpg // STRUCTURE OF JPEG FILE: test/data/exiv2-bug922.jpg // address | marker | length | data // 0 | 0xd8 SOI | 0 // 2 | 0xe1 APP1 | 911 | Exif..MM.*.......%.........#.... // 915 | 0xe1 APP1 | 870 | http://ns.adobe.com/xap/1.0/.(buf.pData_); size_t start = 2; // http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf // if we find HasExtendedXMP, set the flag and ignore this block // the first extended block is a copy of the Standard block. // a robust implementation allows extended blocks to be out of sequence // we could implement out of sequence with a dictionary of sequence/offset // and dumping the XMP in a post read operation similar to kpsIptcErase // for the moment, dumping 'on the fly' is working fine if (!bExtXMP) { while (start < size && xmp[start]) { start++; } start++; if (start < size) { const std::string xmp_from_start = string_from_unterminated(&xmp[start], size - start); if (xmp_from_start.find("HasExtendedXMP", start) != std::string::npos) { start = size; // ignore this packet, we'll get on the next time around bExtXMP = true; } } } else { start = 2 + 35 + 32 + 4 + 4; // Adobe Spec, p19 } enforce(start <= size, kerInvalidXmpText); out.write(reinterpret_cast(&xmp[start]), size - start); done = !bExtXMP; } else if (option == kpsIccProfile && signature.compare(iccId_) == 0) { // extract ICCProfile if (size >= 16) { out.write(reinterpret_cast(buf.pData_ + 16), size - 16); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "iccProfile size = " << size - 16 << std::endl; #endif } } else if (option == kpsIptcErase && signature == "Photoshop 3.0") { // delete IPTC data segment from JPEG iptcDataSegs.push_back(io_->tell() - size); iptcDataSegs.push_back(size); } else if (bPrint) { const size_t start = 2; const size_t end = size > 34 ? 34 : size; out << "| " << Internal::binaryToString(makeSlice(buf, start, end)); if (signature == iccId_) { // extract the chunk information from the buffer // // the buffer looks like this in this branch // ICC_PROFILE\0AB // where A & B are bytes (the variables chunk & chunks) // // We cannot extract the variables A and B from the signature string, as they are beyond the // null termination (and signature ends there). // => Read the chunk info from the DataBuf directly enforce(size >= 16, "Buffer too small to extract chunk information."); const int chunk = buf.pData_[2 + 12]; const int chunks = buf.pData_[2 + 13]; out << Internal::stringFormat(" chunk %d/%d", chunk, chunks); } } // for MPF: http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/MPF.html // for FLIR: http://owl.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html bool bFlir = option == kpsRecursive && marker == (app0_ + 1) && signature == "FLIR"; bool bExif = option == kpsRecursive && marker == (app0_ + 1) && signature == "Exif"; bool bMPF = option == kpsRecursive && marker == (app0_ + 2) && signature == "MPF"; bool bPS = option == kpsRecursive && signature == "Photoshop 3.0"; if (bFlir || bExif || bMPF || bPS) { // extract Exif data block which is tiff formatted out << std::endl; byte* exif = buf.pData_; uint32_t start = signature == "Exif" ? 8 : 6; uint32_t max = static_cast(size) - 1; // is this an fff block? if (bFlir) { start = 2; bFlir = false; while (start+3 <= max) { if (std::strcmp(reinterpret_cast(exif + start), "FFF") == 0) { bFlir = true; break; } start++; } } // there is a header in FLIR, followed by a tiff block // Hunt down the tiff using brute force if (bFlir) { // FLIRFILEHEAD* pFFF = (FLIRFILEHEAD*) (exif+start) ; while (start < max) { if (exif[start] == 'I' && exif[start + 1] == 'I') break; if (exif[start] == 'M' && exif[start + 1] == 'M') break; start++; } if (start < max) std::cout << " FFF start = " << start << std::endl; // << " index = " << pFFF->dwIndexOff << std::endl; } if (bPS) { IptcData::printStructure(out, makeSlice(exif, 0, size), depth); } else { // create a copy on write memio object with the data, then print the structure BasicIo::UniquePtr p = BasicIo::UniquePtr(new MemIo(exif + start, size - start)); if (start < max) printTiffStructure(*p, out, option, depth); } // restore and clean up bLF = false; } } // print COM marker if (bPrint && marker == com_) { assert(markerHasLength(marker)); assert(size >= 2); // Because this marker has a length field. // size includes 2 for the two bytes for size! const size_t n = (size - 2) > 32 ? 32 : size - 2; // start after the two bytes out << "| " << Internal::binaryToString( makeSlice(buf, 2, n + 2 /* cannot overflow as n is at most size - 2 */)); } if (bLF) out << std::endl; if (marker != sos_) { // Read the beginning of the next segment marker = advanceToMarker(kerNoImageInInputData); REPORT_MARKER; } done |= marker == eoi_ || marker == sos_; if (done && bPrint) out << std::endl; } } if (option == kpsIptcErase && !iptcDataSegs.empty()) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << "iptc data blocks: " << iptcDataSegs.size() << std::endl; uint32_t toggle = 0; for (auto&& iptc : iptcDataSegs) { std::cout << iptc; if (toggle++ % 2) std::cout << std::endl; else std::cout << ' '; } #endif size_t count = iptcDataSegs.size(); // figure out which blocks to copy std::vector pos(count + 2); pos[0] = 0; // copy the data that is not iptc auto it = iptcDataSegs.begin(); for (size_t i = 0; i < count; i++) { bool bOdd = (i % 2) != 0; bool bEven = !bOdd; pos[i + 1] = bEven ? *it : pos[i] + *it; ++it; } pos[count + 1] = static_cast(io_->size()); #ifdef EXIV2_DEBUG_MESSAGES for (size_t i = 0; i < count + 2; i++) std::cout << pos[i] << " "; std::cout << std::endl; #endif // $ dd bs=1 skip=$((0)) count=$((13164)) if=ETH0138028.jpg of=E1.jpg // $ dd bs=1 skip=$((49304)) count=2000000 if=ETH0138028.jpg of=E2.jpg // cat E1.jpg E2.jpg > E.jpg // exiv2 -pS E.jpg // binary copy io_ to a temporary file BasicIo::UniquePtr tempIo(new MemIo); assert(tempIo.get() != 0); for (size_t i = 0; i < (count / 2) + 1; i++) { long start = pos[2 * i] + 2; // step JPG 2 byte marker if (start == 2) start = 0; // read the file 2 byte SOI long length = pos[2 * i + 1] - start; if (length) { #ifdef EXIV2_DEBUG_MESSAGES std::cout << start << ":" << length << std::endl; #endif seekOrThrow(*io_, start, BasicIo::beg, kerFailedToReadImageData); DataBuf buf(length); readOrThrow(*io_, buf.pData_, buf.size_, kerFailedToReadImageData); tempIo->write(buf.pData_, buf.size_); } } seekOrThrow(*io_, 0, BasicIo::beg, kerFailedToReadImageData); io_->transfer(*tempIo); // may throw seekOrThrow(*io_, 0, BasicIo::beg, kerFailedToReadImageData); readMetadata(); } } // JpegBase::printStructure void JpegBase::writeMetadata() { if (io_->open() != 0) { throw Error(kerDataSourceOpenFailed, io_->path(), strError()); } IoCloser closer(*io_); BasicIo::UniquePtr tempIo(new MemIo); assert (tempIo.get() != 0); doWriteMetadata(*tempIo); // may throw io_->close(); io_->transfer(*tempIo); // may throw } // JpegBase::writeMetadata void JpegBase::doWriteMetadata(BasicIo& outIo) { if (!io_->isopen()) throw Error(kerInputDataReadFailed); if (!outIo.isopen()) throw Error(kerImageWriteFailed); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(kerInputDataReadFailed); throw Error(kerNoImageInInputData); } // Used to initialize search variables such as skipCom. static const size_t notfound = std::numeric_limits::max(); const long seek = io_->tell(); size_t count = 0; size_t search = 0; size_t insertPos = 0; size_t comPos = 0; size_t skipApp1Exif = notfound; size_t skipApp1Xmp = notfound; bool foundCompletePsData = false; bool foundIccData = false; std::vector skipApp13Ps3; std::vector skipApp2Icc; size_t skipCom = notfound; Blob psBlob; DataBuf rawExif; xmpData().usePacket(writeXmpFromPacket()); // Write image header if (writeHeader(outIo)) throw Error(kerImageWriteFailed); // Read section marker byte marker = advanceToMarker(kerNoImageInInputData); // First find segments of interest. Normally app0 is first and we want // to insert after it. But if app0 comes after com, app1 and app13 then // don't bother. while (marker != sos_ && marker != eoi_ && search < 6) { // 2-byte buffer for reading the size. byte sizebuf[2]; uint16_t size = 0; if (markerHasLength(marker)) { readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData); size = getUShort(sizebuf, bigEndian); // `size` is the size of the segment, including the 2-byte size field // that we just read. enforce(size >= 2, kerFailedToReadImageData); } // Read the rest of the segment. DataBuf buf(size); if (size > 0) { assert(size >= 2); // enforced above readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData); memcpy(buf.pData_, sizebuf, 2); } if (marker == app0_) { assert(markerHasLength(marker)); assert(size >= 2); // Because this marker has a length field. insertPos = count + 1; } else if (skipApp1Exif == notfound && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { enforce(size >= 8, kerNoImageInInputData); skipApp1Exif = count; ++search; rawExif.alloc(size - 8); memcpy(rawExif.pData_, buf.pData_ + 8, size - 8); } else if (skipApp1Xmp == notfound && marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { enforce(size >= 31, kerNoImageInInputData); skipApp1Xmp = count; ++search; } else if (marker == app2_ && memcmp(buf.pData_ + 2, iccId_, 11) == 0) { enforce(size >= 31, kerNoImageInInputData); skipApp2Icc.push_back(count); if (!foundIccData) { ++search; foundIccData = true; } } else if (!foundCompletePsData && marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found APP13 Photoshop PS3 segment\n"; #endif enforce(size >= 16, kerNoImageInInputData); skipApp13Ps3.push_back(count); // Append to psBlob append(psBlob, buf.pData_ + 16, size - 16); // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(&psBlob[0], static_cast(psBlob.size()))) { foundCompletePsData = true; } } else if (marker == com_ && skipCom == notfound) { assert(markerHasLength(marker)); assert(size >= 2); // Because this marker has a length field. // Jpegs can have multiple comments, but for now only handle // the first one (most jpegs only have one anyway). skipCom = count; ++search; } // As in jpeg-6b/wrjpgcom.c: // We will insert the new comment marker just before SOFn. // This (a) causes the new comment to appear after, rather than before, // existing comments; and (b) ensures that comments come after any JFIF // or JFXX markers, as required by the JFIF specification. if (comPos == 0 && inRange2(marker, sof0_, sof3_, sof5_, sof15_)) { comPos = count; ++search; } marker = advanceToMarker(kerNoImageInInputData); ++count; } if (!foundCompletePsData && !psBlob.empty()) throw Error(kerNoImageInInputData); search += skipApp13Ps3.size() + skipApp2Icc.size(); if (comPos == 0) { if (marker == eoi_) comPos = count; else comPos = insertPos; ++search; } if (exifData_.count() > 0) ++search; if (!writeXmpFromPacket() && xmpData_.count() > 0) ++search; if (writeXmpFromPacket() && !xmpPacket_.empty()) ++search; if (foundCompletePsData || iptcData_.count() > 0) ++search; if (!comment_.empty()) ++search; seekOrThrow(*io_, seek, BasicIo::beg, kerNoImageInInputData); count = 0; marker = advanceToMarker(kerNoImageInInputData); // To simplify this a bit, new segments are inserts at either the start // or right after app0. This is standard in most jpegs, but has the // potential to change segment ordering (which is allowed). // Segments are erased if there is no assigned metadata. while (marker != sos_ && search > 0) { // 2-byte buffer for reading the size. byte sizebuf[2]; uint16_t size = 0; if (markerHasLength(marker)) { readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData); size = getUShort(sizebuf, bigEndian); // `size` is the size of the segment, including the 2-byte size field // that we just read. enforce(size >= 2, kerFailedToReadImageData); } // Read the rest of the segment. DataBuf buf(size); if (size > 0) { assert(size >= 2); // enforced above readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData); memcpy(buf.pData_, sizebuf, 2); } if (insertPos == count) { // Write Exif data first so that - if there is no app0 - we // create "Exif images" according to the Exif standard. if (exifData_.count() > 0) { Blob blob; ByteOrder bo = byteOrder(); if (bo == invalidByteOrder) { bo = littleEndian; setByteOrder(bo); } WriteMethod wm = ExifParser::encode(blob, rawExif.pData_, rawExif.size_, bo, exifData_); const byte* pExifData = rawExif.pData_; size_t exifSize = rawExif.size_; if (wm == wmIntrusive) { pExifData = !blob.empty() ? &blob[0] : nullptr; exifSize = blob.size(); } if (exifSize > 0) { byte tmpBuf[10]; // Write APP1 marker, size of APP1 field, Exif id and Exif data tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (exifSize > 0xffff - 8) throw Error(kerTooLargeJpegSegment, "Exif"); us2Data(tmpBuf + 2, static_cast(exifSize + 8), bigEndian); std::memcpy(tmpBuf + 4, exifId_, 6); if (outIo.write(tmpBuf, 10) != 10) throw Error(kerImageWriteFailed); // Write new Exif data buffer if (outIo.write(pExifData, static_cast(exifSize)) != static_cast(exifSize)) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } } if (!writeXmpFromPacket()) { if (XmpParser::encode(xmpPacket_, xmpData_, XmpParser::useCompactFormat | XmpParser::omitAllFormatting) > 1) { #ifndef SUPPRESS_WARNINGS EXV_ERROR << "Failed to encode XMP metadata.\n"; #endif } } if (!xmpPacket_.empty()) { byte tmpBuf[33]; // Write APP1 marker, size of APP1 field, XMP id and XMP packet tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (xmpPacket_.size() > 0xffff - 31) throw Error(kerTooLargeJpegSegment, "XMP"); us2Data(tmpBuf + 2, static_cast(xmpPacket_.size() + 31), bigEndian); std::memcpy(tmpBuf + 4, xmpId_, 29); if (outIo.write(tmpBuf, 33) != 33) throw Error(kerImageWriteFailed); // Write new XMP packet if (outIo.write(reinterpret_cast(xmpPacket_.data()), static_cast(xmpPacket_.size())) != static_cast(xmpPacket_.size())) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } if (iccProfileDefined()) { byte tmpBuf[4]; // Write APP2 marker, size of APP2 field, and IccProfile // See comments in readMetadata() about the ICC embedding specification tmpBuf[0] = 0xff; tmpBuf[1] = app2_; const long chunk_size = 256 * 256 - 40; // leave bytes for marker, header and padding long size = iccProfile_.size_; assert(size > 0); // Because iccProfileDefined() == true if (size >= 255 * chunk_size) throw Error(kerTooLargeJpegSegment, "IccProfile"); const long chunks = 1 + (size - 1) / chunk_size; assert(chunks <= 255); // Because size < 255 * chunk_size for (long chunk = 0; chunk < chunks; chunk++) { long bytes = size > chunk_size ? chunk_size : size; // bytes to write size -= bytes; // write JPEG marker (2 bytes) if (outIo.write(tmpBuf, 2) != 2) throw Error(kerImageWriteFailed); // JPEG Marker // write length (2 bytes). length includes the 2 bytes for the length us2Data(tmpBuf + 2, static_cast(2 + 14 + bytes), bigEndian); if (outIo.write(tmpBuf + 2, 2) != 2) throw Error(kerImageWriteFailed); // JPEG Length // write the ICC_PROFILE header (14 bytes) uint8_t pad[2]; pad[0] = static_cast(chunk + 1); pad[1] = static_cast(chunks); outIo.write((const byte*)iccId_, 12); outIo.write((const byte*)pad, 2); if (outIo.write(iccProfile_.pData_ + (chunk * chunk_size), bytes) != bytes) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); } --search; } if (foundCompletePsData || iptcData_.count() > 0) { // Set the new IPTC IRB, keeps existing IRBs but removes the // IPTC block if there is no new IPTC data to write DataBuf newPsData = Photoshop::setIptcIrb(!psBlob.empty() ? &psBlob[0] : nullptr, static_cast(psBlob.size()), iptcData_); const long maxChunkSize = 0xffff - 16; const byte* chunkStart = newPsData.pData_; const byte* chunkEnd = chunkStart + newPsData.size_; while (chunkStart < chunkEnd) { // Determine size of next chunk long chunkSize = static_cast(chunkEnd - chunkStart); if (chunkSize > maxChunkSize) { chunkSize = maxChunkSize; // Don't break at a valid IRB boundary const long writtenSize = static_cast(chunkStart - newPsData.pData_); if (Photoshop::valid(newPsData.pData_, writtenSize + chunkSize)) { // Since an IRB has minimum size 12, // (chunkSize - 8) can't be also a IRB boundary chunkSize -= 8; } } // Write APP13 marker, chunk size, and ps3Id byte tmpBuf[18]; tmpBuf[0] = 0xff; tmpBuf[1] = app13_; us2Data(tmpBuf + 2, static_cast(chunkSize + 16), bigEndian); std::memcpy(tmpBuf + 4, Photoshop::ps3Id_, 14); if (outIo.write(tmpBuf, 18) != 18) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); // Write next chunk of the Photoshop IRB data buffer if (outIo.write(chunkStart, chunkSize) != chunkSize) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); chunkStart += chunkSize; } --search; } } if (comPos == count) { if (!comment_.empty()) { byte tmpBuf[4]; // Write COM marker, size of comment, and string tmpBuf[0] = 0xff; tmpBuf[1] = com_; if (comment_.length() > 0xffff - 3) throw Error(kerTooLargeJpegSegment, "JPEG comment"); us2Data(tmpBuf + 2, static_cast(comment_.length() + 3), bigEndian); if (outIo.write(tmpBuf, 4) != 4) throw Error(kerImageWriteFailed); if (outIo.write(reinterpret_cast(const_cast(comment_.data())), static_cast(comment_.length())) != static_cast(comment_.length())) throw Error(kerImageWriteFailed); if (outIo.putb(0) == EOF) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); --search; } --search; } if (marker == eoi_) { break; } if (skipApp1Exif == count || skipApp1Xmp == count || std::find(skipApp13Ps3.begin(), skipApp13Ps3.end(), count) != skipApp13Ps3.end() || std::find(skipApp2Icc.begin(), skipApp2Icc.end(), count) != skipApp2Icc.end() || skipCom == count) { --search; } else { byte tmpBuf[2]; // Write marker and a copy of the segment. tmpBuf[0] = 0xff; tmpBuf[1] = marker; if (outIo.write(tmpBuf, 2) != 2) throw Error(kerImageWriteFailed); if (outIo.write(buf.pData_, size) != size) throw Error(kerImageWriteFailed); if (outIo.error()) throw Error(kerImageWriteFailed); } // Next marker marker = advanceToMarker(kerNoImageInInputData); ++count; } // Populate the fake data, only make sense for remoteio, httpio and sshio. // it avoids allocating memory for parts of the file that contain image-date. io_->populateFakeData(); // Write the final marker, then copy rest of the Io. byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = marker; if (outIo.write(tmpBuf, 2) != 2) throw Error(kerImageWriteFailed); DataBuf buf(4096); long readSize = 0; while ((readSize = io_->read(buf.pData_, buf.size_))) { if (outIo.write(buf.pData_, readSize) != readSize) throw Error(kerImageWriteFailed); } if (outIo.error()) throw Error(kerImageWriteFailed); } // JpegBase::doWriteMetadata const byte JpegImage::soi_ = 0xd8; const byte JpegImage::blank_[] = { 0xFF,0xD8,0xFF,0xDB,0x00,0x84,0x00,0x10,0x0B,0x0B,0x0B,0x0C,0x0B,0x10,0x0C,0x0C, 0x10,0x17,0x0F,0x0D,0x0F,0x17,0x1B,0x14,0x10,0x10,0x14,0x1B,0x1F,0x17,0x17,0x17, 0x17,0x17,0x1F,0x1E,0x17,0x1A,0x1A,0x1A,0x1A,0x17,0x1E,0x1E,0x23,0x25,0x27,0x25, 0x23,0x1E,0x2F,0x2F,0x33,0x33,0x2F,0x2F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x01,0x11,0x0F,0x0F,0x11,0x13,0x11,0x15,0x12, 0x12,0x15,0x14,0x11,0x14,0x11,0x14,0x1A,0x14,0x16,0x16,0x14,0x1A,0x26,0x1A,0x1A, 0x1C,0x1A,0x1A,0x26,0x30,0x23,0x1E,0x1E,0x1E,0x1E,0x23,0x30,0x2B,0x2E,0x27,0x27, 0x27,0x2E,0x2B,0x35,0x35,0x30,0x30,0x35,0x35,0x40,0x40,0x3F,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0xFF,0xC0,0x00,0x11,0x08,0x00,0x01,0x00, 0x01,0x03,0x01,0x22,0x00,0x02,0x11,0x01,0x03,0x11,0x01,0xFF,0xC4,0x00,0x4B,0x00, 0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x07,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xDA,0x00,0x0C,0x03,0x01,0x00,0x02, 0x11,0x03,0x11,0x00,0x3F,0x00,0xA0,0x00,0x0F,0xFF,0xD9 }; JpegImage::JpegImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::jpeg, std::move(io), create, blank_, sizeof(blank_)) { } std::string JpegImage::mimeType() const { return "image/jpeg"; } int JpegImage::writeHeader(BasicIo& outIo) const { // Jpeg header byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = soi_; if (outIo.write(tmpBuf, 2) != 2) return 4; if (outIo.error()) return 4; return 0; } bool JpegImage::isThisType(BasicIo& iIo, bool advance) const { return isJpegType(iIo, advance); } Image::UniquePtr newJpegInstance(BasicIo::UniquePtr io, bool create) { Image::UniquePtr image(new JpegImage(std::move(io), create)); if (!image->good()) { image.reset(); } return image; } bool isJpegType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[2]; iIo.read(tmpBuf, 2); if (iIo.error() || iIo.eof()) return false; if (0xff != tmpBuf[0] || JpegImage::soi_ != tmpBuf[1]) { result = false; } if (!advance || !result ) iIo.seek(-2, BasicIo::cur); return result; } const char ExvImage::exiv2Id_[] = "Exiv2"; const byte ExvImage::blank_[] = { 0xff,0x01,'E','x','i','v','2',0xff,0xd9 }; ExvImage::ExvImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::exv, std::move(io), create, blank_, sizeof(blank_)) { } std::string ExvImage::mimeType() const { return "image/x-exv"; } int ExvImage::writeHeader(BasicIo& outIo) const { // Exv header byte tmpBuf[7]; tmpBuf[0] = 0xff; tmpBuf[1] = 0x01; std::memcpy(tmpBuf + 2, exiv2Id_, 5); if (outIo.write(tmpBuf, 7) != 7) return 4; if (outIo.error()) return 4; return 0; } bool ExvImage::isThisType(BasicIo& iIo, bool advance) const { return isExvType(iIo, advance); } Image::UniquePtr newExvInstance(BasicIo::UniquePtr io, bool create) { Image::UniquePtr image; image = Image::UniquePtr(new ExvImage(std::move(io), create)); if (!image->good()) image.reset(); return image; } bool isExvType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[7]; iIo.read(tmpBuf, 7); if (iIo.error() || iIo.eof()) return false; if ( 0xff != tmpBuf[0] || 0x01 != tmpBuf[1] || memcmp(tmpBuf + 2, ExvImage::exiv2Id_, 5) != 0) { result = false; } if (!advance || !result) iIo.seek(-7, BasicIo::cur); return result; } } // namespace Exiv2