// ***************************************************************** -*- C++ -*- /* * Copyright (C) 2004-2008 Andreas Huggel * * This program is part of the Exiv2 distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA. */ /* File: jpgimage.cpp Version: $Rev$ Author(s): Andreas Huggel (ahu) Brad Schick (brad) History: 15-Jan-05, brad: split out from image.cpp */ // ***************************************************************************** #include "rcsid.hpp" EXIV2_RCSID("@(#) $Id$") // ***************************************************************************** // included header files #ifdef _MSC_VER # include "exv_msvc.h" #else # include "exv_conf.h" #endif #include "jpgimage.hpp" #include "error.hpp" #include "futils.hpp" // + standard includes #include #include // ***************************************************************************** // class member definitions namespace Exiv2 { const byte JpegBase::sos_ = 0xda; const byte JpegBase::eoi_ = 0xd9; const byte JpegBase::app0_ = 0xe0; const byte JpegBase::app1_ = 0xe1; const byte JpegBase::app13_ = 0xed; const byte JpegBase::com_ = 0xfe; // Start of Frame markers, nondifferential Huffman-coding frames const byte JpegBase::sof0_ = 0xc0; // start of frame 0, baseline DCT const byte JpegBase::sof1_ = 0xc1; // start of frame 1, extended sequential DCT, Huffman coding const byte JpegBase::sof2_ = 0xc2; // start of frame 2, progressive DCT, Huffman coding const byte JpegBase::sof3_ = 0xc3; // start of frame 3, lossless sequential, Huffman coding // Start of Frame markers, differential Huffman-coding frames const byte JpegBase::sof5_ = 0xc5; // start of frame 5, differential sequential DCT, Huffman coding const byte JpegBase::sof6_ = 0xc6; // start of frame 6, differential progressive DCT, Huffman coding const byte JpegBase::sof7_ = 0xc7; // start of frame 7, differential lossless, Huffman coding // Start of Frame markers, nondifferential arithmetic-coding frames const byte JpegBase::sof9_ = 0xc9; // start of frame 9, extended sequential DCT, arithmetic coding const byte JpegBase::sof10_ = 0xca; // start of frame 10, progressive DCT, arithmetic coding const byte JpegBase::sof11_ = 0xcb; // start of frame 11, lossless sequential, arithmetic coding // Start of Frame markers, differential arithmetic-coding frames const byte JpegBase::sof13_ = 0xcd; // start of frame 13, differential sequential DCT, arithmetic coding const byte JpegBase::sof14_ = 0xce; // start of frame 14, progressive DCT, arithmetic coding const byte JpegBase::sof15_ = 0xcf; // start of frame 15, differential lossless, arithmetic coding const char JpegBase::exifId_[] = "Exif\0\0"; const char JpegBase::jfifId_[] = "JFIF\0"; const char JpegBase::xmpId_[] = "http://ns.adobe.com/xap/1.0/\0"; const char Photoshop::ps3Id_[] = "Photoshop 3.0\0"; const char Photoshop::bimId_[] = "8BIM"; const uint16_t Photoshop::iptc_ = 0x0404; // Todo: Generalised from JpegBase::locateIptcData without really understanding // the format (in particular the header). So it remains to be confirmed // if this also makes sense for psTag != Photoshop::iptc int Photoshop::locateIrb(const byte* pPsData, long sizePsData, uint16_t psTag, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { assert(record); assert(sizeHdr); assert(sizeData); // Used for error checking long position = 0; #ifdef DEBUG std::cerr << "Photoshop::locateIrb: "; #endif // Data should follow Photoshop format, if not exit while ( position <= sizePsData - 14 && memcmp(pPsData + position, Photoshop::bimId_, 4) == 0) { const byte *hrd = pPsData + position; position += 4; uint16_t type = getUShort(pPsData + position, bigEndian); position += 2; #ifdef DEBUG std::cerr << "0x" << std::hex << type << std::dec << " "; #endif // Pascal string is padded to have an even size (including size byte) byte psSize = pPsData[position] + 1; psSize += (psSize & 1); position += psSize; if (position + 4 > sizePsData) { #ifndef SUPPRESS_WARNINGS std::cerr << "Error: " << "Invalid Photoshop IRB\n"; #endif return -2; } uint32_t dataSize = getULong(pPsData + position, bigEndian); position += 4; if (dataSize > static_cast(sizePsData - position)) { #ifndef SUPPRESS_WARNINGS std::cerr << "Error: " << "Invalid Photoshop IRB data size " << dataSize << "\n"; #endif return -2; } #ifndef DEBUG if ( (dataSize & 1) && position + dataSize == static_cast(sizePsData)) { std::cerr << "Warning: " << "Photoshop IRB data is not padded to even size\n"; } #endif if (type == psTag) { #ifdef DEBUG std::cerr << "ok\n"; #endif *sizeData = dataSize; *sizeHdr = psSize + 10; *record = hrd; return 0; } // Data size is also padded to be even position += dataSize + (dataSize & 1); } #ifdef DEBUG std::cerr << "pPsData doesn't start with '8BIM'\n"; #endif return 3; } // Photoshop::locateIrb int Photoshop::locateIptcIrb(const byte* pPsData, long sizePsData, const byte** record, uint32_t *const sizeHdr, uint32_t *const sizeData) { return locateIrb(pPsData, sizePsData, iptc_, record, sizeHdr, sizeData); } DataBuf Photoshop::setIptcIrb(const byte* pPsData, long sizePsData, const IptcData& iptcData) { if (sizePsData > 0) assert(pPsData); #ifdef DEBUG std::cerr << "IRB block at the beginning of Photoshop::setIptcIrb\n"; if (sizePsData == 0) std::cerr << " None.\n"; else hexdump(std::cerr, pPsData, sizePsData); #endif const byte* record = pPsData; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; DataBuf rc; // Safe to call with zero psData.size_ if (0 > Photoshop::locateIptcIrb(pPsData, sizePsData, &record, &sizeHdr, &sizeIptc)) { return rc; } Blob psBlob; const uint32_t sizeFront = static_cast(record - pPsData); // Write data before old record. if (sizePsData > 0 && sizeFront > 0) { append(psBlob, pPsData, sizeFront); } // Write new iptc record if we have it DataBuf rawIptc = IptcParser::encode(iptcData); if (rawIptc.size_ > 0) { byte tmpBuf[12]; std::memcpy(tmpBuf, Photoshop::bimId_, 4); us2Data(tmpBuf + 4, iptc_, bigEndian); tmpBuf[6] = 0; tmpBuf[7] = 0; ul2Data(tmpBuf + 8, rawIptc.size_, bigEndian); append(psBlob, tmpBuf, 12); append(psBlob, rawIptc.pData_, rawIptc.size_); // Data is padded to be even (but not included in size) if (rawIptc.size_ & 1) psBlob.push_back(0x00); } // Write existing stuff after record, data is rounded to be even. const uint32_t sizeOldData = sizeHdr + sizeIptc + (sizeIptc & 1); // Note: Because of the rounding, sizeFront + sizeOldData can be // _greater_ than sizePsData by 1 (not just equal), if the original // data was not padded. if (static_cast(sizePsData) > sizeFront + sizeOldData) { append(psBlob, record + sizeOldData, sizePsData - sizeFront - sizeOldData); } if (psBlob.size() > 0) rc = DataBuf(&psBlob[0], static_cast(psBlob.size())); #ifdef DEBUG std::cerr << "IRB block at the end of Photoshop::setIptcIrb\n"; if (rc.size_ == 0) std::cerr << " None.\n"; else hexdump(std::cerr, rc.pData_, rc.size_); #endif return rc; } // Photoshop::setIptcIrb JpegBase::JpegBase(int type, BasicIo::AutoPtr io, bool create, const byte initData[], long dataSize) : Image(type, mdExif | mdIptc | mdComment, io) { if (create) { initImage(initData, dataSize); } } int JpegBase::initImage(const byte initData[], long dataSize) { if (io_->open() != 0) { return 4; } IoCloser closer(*io_); if (io_->write(initData, dataSize) != dataSize) { return 4; } return 0; } int JpegBase::advanceToMarker() const { int c = -1; // Skips potential padding between markers while ((c=io_->getb()) != 0xff) { if (c == EOF) return -1; } // Markers can start with any number of 0xff while ((c=io_->getb()) == 0xff) { if (c == EOF) return -2; } return c; } void JpegBase::readMetadata() { int rc = 0; // Todo: this should be the return value if (io_->open() != 0) throw Error(9, io_->path(), strError()); IoCloser closer(*io_); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(14); throw Error(15); } clearMetadata(); int search = 5; const long bufMinSize = 36; long bufRead = 0; DataBuf buf(bufMinSize); Blob iptcBlob; bool foundPsData = false; bool foundExifData = false; // Read section marker int marker = advanceToMarker(); if (marker < 0) throw Error(15); while (marker != sos_ && marker != eoi_ && search > 0) { // Read size and signature (ok if this hits EOF) std::memset(buf.pData_, 0x0, buf.size_); bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(14); if (bufRead < 2) throw Error(15); uint16_t size = getUShort(buf.pData_, bigEndian); if (foundPsData && marker != app13_) { // For IPTC, decrement search only after all app13 segments are // loaded, assuming they all appear in sequence. But decode IPTC // data after the loop, in case an app13 is the last segment // before sos or eoi. foundPsData = false; if (--search == 0) break; } if ( !foundExifData && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { if (size < 8) { rc = 1; break; } // Seek to beginning and read the Exif data io_->seek(8 - bufRead, BasicIo::cur); DataBuf rawExif(size - 8); io_->read(rawExif.pData_, rawExif.size_); if (io_->error() || io_->eof()) throw Error(14); ByteOrder bo = ExifParser::decode(exifData_, rawExif.pData_, rawExif.size_); setByteOrder(bo); if (rawExif.size_ > 0 && byteOrder() == invalidByteOrder) { #ifndef SUPPRESS_WARNINGS std::cerr << "Warning: Failed to decode Exif metadata.\n"; #endif exifData_.clear(); } --search; foundExifData = true; } else if (marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { if (size < 31) { rc = 6; break; } // Seek to beginning and read the XMP packet io_->seek(31 - bufRead, BasicIo::cur); DataBuf xmpPacket(size - 31); io_->read(xmpPacket.pData_, xmpPacket.size_); if (io_->error() || io_->eof()) throw Error(14); xmpPacket_.assign(reinterpret_cast(xmpPacket.pData_), xmpPacket.size_); if (xmpPacket_.size() > 0 && XmpParser::decode(xmpData_, xmpPacket_)) { #ifndef SUPPRESS_WARNINGS std::cerr << "Warning: Failed to decode XMP metadata.\n"; #endif } --search; } else if ( marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { if (size < 16) { rc = 2; break; } // Read the rest of the APP13 segment io_->seek(16 - bufRead, BasicIo::cur); DataBuf psData(size - 16); io_->read(psData.pData_, psData.size_); if (io_->error() || io_->eof()) throw Error(14); const byte *record = 0; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; #ifdef DEBUG std::cerr << "Found app13 segment, size = " << size << "\n"; //hexdump(std::cerr, psData.pData_, psData.size_); #endif // Find actual IPTC data within the APP13 segment const byte* pEnd = psData.pData_ + psData.size_; const byte* pCur = psData.pData_; while ( pCur < pEnd && 0 == Photoshop::locateIptcIrb(pCur, static_cast(pEnd - pCur), &record, &sizeHdr, &sizeIptc)) { if (sizeIptc) { #ifdef DEBUG std::cerr << "Found IPTC IRB, size = " << sizeIptc << "\n"; #endif append(iptcBlob, record + sizeHdr, sizeIptc); } pCur = record + sizeHdr + sizeIptc; pCur += (sizeIptc & 1); } foundPsData = true; } else if (marker == com_ && comment_.empty()) { if (size < 2) { rc = 3; break; } // JPEGs can have multiple comments, but for now only read // the first one (most jpegs only have one anyway). Comments // are simple single byte ISO-8859-1 strings. io_->seek(2 - bufRead, BasicIo::cur); DataBuf comment(size - 2); io_->read(comment.pData_, comment.size_); if (io_->error() || io_->eof()) throw Error(14); comment_.assign(reinterpret_cast(comment.pData_), comment.size_); while ( comment_.length() && comment_.at(comment_.length()-1) == '\0') { comment_.erase(comment_.length()-1); } --search; } else if ( pixelHeight_ == 0 && ( marker == sof0_ || marker == sof1_ || marker == sof2_ || marker == sof3_ || marker == sof5_ || marker == sof6_ || marker == sof7_ || marker == sof9_ || marker == sof10_ || marker == sof11_ || marker == sof13_ || marker == sof14_ || marker == sof15_)) { // We hit a SOFn (start-of-frame) marker if (size < 8) { rc = 7; break; } pixelHeight_ = getUShort(buf.pData_ + 3, bigEndian); pixelWidth_ = getUShort(buf.pData_ + 5, bigEndian); if (pixelHeight_ != 0) --search; // Skip the remainder of the segment io_->seek(size-bufRead, BasicIo::cur); } else { if (size < 2) { rc = 4; break; } // Skip the remainder of the unknown segment if (io_->seek(size - bufRead, BasicIo::cur)) throw Error(14); } // Read the beginning of the next segment marker = advanceToMarker(); if (marker < 0) { rc = 5; break; } } // while there are segments to process if ( iptcBlob.size() > 0 && IptcParser::decode(iptcData_, &iptcBlob[0], static_cast(iptcBlob.size()))) { #ifndef SUPPRESS_WARNINGS std::cerr << "Warning: Failed to decode IPTC metadata.\n"; #endif iptcData_.clear(); } if (rc != 0) { #ifndef SUPPRESS_WARNINGS std::cerr << "Warning: JPEG format error, rc = " << rc << "\n"; #endif } } // JpegBase::readMetadata void JpegBase::writeMetadata() { if (io_->open() != 0) { throw Error(9, io_->path(), strError()); } IoCloser closer(*io_); BasicIo::AutoPtr tempIo(io_->temporary()); // may throw assert (tempIo.get() != 0); doWriteMetadata(*tempIo); // may throw io_->close(); io_->transfer(*tempIo); // may throw } // JpegBase::writeMetadata void JpegBase::doWriteMetadata(BasicIo& outIo) { if (!io_->isopen()) throw Error(20); if (!outIo.isopen()) throw Error(21); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(20); throw Error(22); } const long bufMinSize = 36; long bufRead = 0; DataBuf buf(bufMinSize); const long seek = io_->tell(); int count = 0; int search = 0; int insertPos = 0; int skipApp1Exif = -1; int skipApp1Xmp = -1; int skipApp13Ps3 = -1; int skipCom = -1; DataBuf psData; DataBuf rawExif; // Write image header if (writeHeader(outIo)) throw Error(21); // Read section marker int marker = advanceToMarker(); if (marker < 0) throw Error(22); // First find segments of interest. Normally app0 is first and we want // to insert after it. But if app0 comes after com, app1 and app13 then // don't bother. while (marker != sos_ && marker != eoi_ && search < 4) { // Read size and signature (ok if this hits EOF) bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(20); uint16_t size = getUShort(buf.pData_, bigEndian); if (marker == app0_) { if (size < 2) throw Error(22); insertPos = count + 1; if (io_->seek(size-bufRead, BasicIo::cur)) throw Error(22); } else if ( skipApp1Exif == -1 && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) { if (size < 8) throw Error(22); skipApp1Exif = count; ++search; // Seek to beginning and read the current Exif data io_->seek(8 - bufRead, BasicIo::cur); rawExif.alloc(size - 8); io_->read(rawExif.pData_, rawExif.size_); if (io_->error() || io_->eof()) throw Error(22); } else if (marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) { if (size < 31) throw Error(22); skipApp1Xmp = count; ++search; if (io_->seek(size-bufRead, BasicIo::cur)) throw Error(22); } else if (marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) { #ifdef DEBUG std::cerr << "Found APP13 Photoshop PS3 segment\n"; #endif if (size < 16) throw Error(22); skipApp13Ps3 = count; ++search; io_->seek(16 - bufRead, BasicIo::cur); psData.alloc(size - 16); // Load PS data now to allow reinsertion at any point io_->read(psData.pData_, size - 16); if (io_->error() || io_->eof()) throw Error(20); } else if (marker == com_ && skipCom == -1) { if (size < 2) throw Error(22); // Jpegs can have multiple comments, but for now only handle // the first one (most jpegs only have one anyway). skipCom = count; ++search; if (io_->seek(size-bufRead, BasicIo::cur)) throw Error(22); } else { if (size < 2) throw Error(22); if (io_->seek(size-bufRead, BasicIo::cur)) throw Error(22); } marker = advanceToMarker(); if (marker < 0) throw Error(22); ++count; } if (exifData_.count() > 0) ++search; if (writeXmpFromPacket() == false && xmpData_.count() > 0) ++search; if (writeXmpFromPacket() == true && xmpPacket_.size() > 0) ++search; if (iptcData_.count() > 0) ++search; if (!comment_.empty()) ++search; io_->seek(seek, BasicIo::beg); count = 0; marker = advanceToMarker(); if (marker < 0) throw Error(22); // To simplify this a bit, new segments are inserts at either the start // or right after app0. This is standard in most jpegs, but has the // potential to change segment ordering (which is allowed). // Segments are erased if there is no assigned metadata. while (marker != sos_ && search > 0) { // Read size and signature (ok if this hits EOF) bufRead = io_->read(buf.pData_, bufMinSize); if (io_->error()) throw Error(20); // Careful, this can be a meaningless number for empty // images with only an eoi_ marker uint16_t size = getUShort(buf.pData_, bigEndian); if (insertPos == count) { byte tmpBuf[64]; if (!comment_.empty()) { // Write COM marker, size of comment, and string tmpBuf[0] = 0xff; tmpBuf[1] = com_; if (comment_.length() + 3 > 0xffff) throw Error(37, "JPEG comment"); us2Data(tmpBuf + 2, static_cast(comment_.length() + 3), bigEndian); if (outIo.write(tmpBuf, 4) != 4) throw Error(21); if (outIo.write((byte*)comment_.data(), (long)comment_.length()) != (long)comment_.length()) throw Error(21); if (outIo.putb(0)==EOF) throw Error(21); if (outIo.error()) throw Error(21); --search; } if (exifData_.count() > 0) { Blob blob; ByteOrder bo = byteOrder(); if (bo == invalidByteOrder) { bo = littleEndian; setByteOrder(bo); } WriteMethod wm = ExifParser::encode(blob, rawExif.pData_, rawExif.size_, bo, exifData_); const byte* pExifData = rawExif.pData_; uint32_t exifSize = rawExif.size_; if (wm == wmIntrusive) { pExifData = blob.size() > 0 ? &blob[0] : 0; exifSize = static_cast(blob.size()); } if (exifSize > 0) { // Write APP1 marker, size of APP1 field, Exif id and Exif data tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (exifSize + 8 > 0xffff) throw Error(37, "Exif"); us2Data(tmpBuf + 2, static_cast(exifSize + 8), bigEndian); std::memcpy(tmpBuf + 4, exifId_, 6); if (outIo.write(tmpBuf, 10) != 10) throw Error(21); // Write new Exif data buffer if ( outIo.write(pExifData, exifSize) != static_cast(exifSize)) throw Error(21); if (outIo.error()) throw Error(21); --search; } } if (writeXmpFromPacket() == false) { if (XmpParser::encode(xmpPacket_, xmpData_) > 1) { #ifndef SUPPRESS_WARNINGS std::cerr << "Error: Failed to encode XMP metadata.\n"; #endif } } if (xmpPacket_.size() > 0) { // Write APP1 marker, size of APP1 field, XMP id and XMP packet tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (xmpPacket_.size() + 31 > 0xffff) throw Error(37, "XMP"); us2Data(tmpBuf + 2, static_cast(xmpPacket_.size() + 31), bigEndian); std::memcpy(tmpBuf + 4, xmpId_, 29); if (outIo.write(tmpBuf, 33) != 33) throw Error(21); // Write new XMP packet if ( outIo.write(reinterpret_cast(xmpPacket_.data()), static_cast(xmpPacket_.size())) != static_cast(xmpPacket_.size())) throw Error(21); if (outIo.error()) throw Error(21); --search; } if (psData.size_ > 0 || iptcData_.count() > 0) { // Set the new IPTC IRB, keeps existing IRBs but removes the // IPTC block if there is no new IPTC data to write DataBuf newPsData = Photoshop::setIptcIrb(psData.pData_, psData.size_, iptcData_); if (newPsData.size_ > 0) { // Write APP13 marker, new size, and ps3Id tmpBuf[0] = 0xff; tmpBuf[1] = app13_; if (newPsData.size_ + 16 > 0xffff) throw Error(37, "IPTC"); us2Data(tmpBuf + 2, static_cast(newPsData.size_ + 16), bigEndian); std::memcpy(tmpBuf + 4, Photoshop::ps3Id_, 14); if (outIo.write(tmpBuf, 18) != 18) throw Error(21); if (outIo.error()) throw Error(21); // Write new Photoshop IRB data buffer if ( outIo.write(newPsData.pData_, newPsData.size_) != newPsData.size_) throw Error(21); if (outIo.error()) throw Error(21); } if (iptcData_.count() > 0) { --search; } } } if (marker == eoi_) { break; } else if ( skipApp1Exif == count || skipApp1Xmp == count || skipApp13Ps3 == count || skipCom == count) { --search; io_->seek(size-bufRead, BasicIo::cur); } else { if (size < 2) throw Error(22); buf.alloc(size+2); io_->seek(-bufRead-2, BasicIo::cur); io_->read(buf.pData_, size+2); if (io_->error() || io_->eof()) throw Error(20); if (outIo.write(buf.pData_, size+2) != size+2) throw Error(21); if (outIo.error()) throw Error(21); } // Next marker marker = advanceToMarker(); if (marker < 0) throw Error(22); ++count; } // Copy rest of the Io io_->seek(-2, BasicIo::cur); buf.alloc(4096); long readSize = 0; while ((readSize=io_->read(buf.pData_, buf.size_))) { if (outIo.write(buf.pData_, readSize) != readSize) throw Error(21); } if (outIo.error()) throw Error(21); } // JpegBase::doWriteMetadata const byte JpegImage::soi_ = 0xd8; const byte JpegImage::blank_[] = { 0xFF,0xD8,0xFF,0xDB,0x00,0x84,0x00,0x10,0x0B,0x0B,0x0B,0x0C,0x0B,0x10,0x0C,0x0C, 0x10,0x17,0x0F,0x0D,0x0F,0x17,0x1B,0x14,0x10,0x10,0x14,0x1B,0x1F,0x17,0x17,0x17, 0x17,0x17,0x1F,0x1E,0x17,0x1A,0x1A,0x1A,0x1A,0x17,0x1E,0x1E,0x23,0x25,0x27,0x25, 0x23,0x1E,0x2F,0x2F,0x33,0x33,0x2F,0x2F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x01,0x11,0x0F,0x0F,0x11,0x13,0x11,0x15,0x12, 0x12,0x15,0x14,0x11,0x14,0x11,0x14,0x1A,0x14,0x16,0x16,0x14,0x1A,0x26,0x1A,0x1A, 0x1C,0x1A,0x1A,0x26,0x30,0x23,0x1E,0x1E,0x1E,0x1E,0x23,0x30,0x2B,0x2E,0x27,0x27, 0x27,0x2E,0x2B,0x35,0x35,0x30,0x30,0x35,0x35,0x40,0x40,0x3F,0x40,0x40,0x40,0x40, 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0xFF,0xC0,0x00,0x11,0x08,0x00,0x01,0x00, 0x01,0x03,0x01,0x22,0x00,0x02,0x11,0x01,0x03,0x11,0x01,0xFF,0xC4,0x00,0x4B,0x00, 0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x07,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xDA,0x00,0x0C,0x03,0x01,0x00,0x02, 0x11,0x03,0x11,0x00,0x3F,0x00,0xA0,0x00,0x0F,0xFF,0xD9 }; JpegImage::JpegImage(BasicIo::AutoPtr io, bool create) : JpegBase(ImageType::jpeg, io, create, blank_, sizeof(blank_)) { } int JpegImage::writeHeader(BasicIo& outIo) const { // Jpeg header byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = soi_; if (outIo.write(tmpBuf, 2) != 2) return 4; if (outIo.error()) return 4; return 0; } bool JpegImage::isThisType(BasicIo& iIo, bool advance) const { return isJpegType(iIo, advance); } Image::AutoPtr newJpegInstance(BasicIo::AutoPtr io, bool create) { Image::AutoPtr image(new JpegImage(io, create)); if (!image->good()) { image.reset(); } return image; } bool isJpegType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[2]; iIo.read(tmpBuf, 2); if (iIo.error() || iIo.eof()) return false; if (0xff != tmpBuf[0] || JpegImage::soi_ != tmpBuf[1]) { result = false; } if (!advance || !result ) iIo.seek(-2, BasicIo::cur); return result; } const char ExvImage::exiv2Id_[] = "Exiv2"; const byte ExvImage::blank_[] = { 0xff,0x01,'E','x','i','v','2',0xff,0xd9 }; ExvImage::ExvImage(BasicIo::AutoPtr io, bool create) : JpegBase(ImageType::exv, io, create, blank_, sizeof(blank_)) { } int ExvImage::writeHeader(BasicIo& outIo) const { // Exv header byte tmpBuf[7]; tmpBuf[0] = 0xff; tmpBuf[1] = 0x01; std::memcpy(tmpBuf + 2, exiv2Id_, 5); if (outIo.write(tmpBuf, 7) != 7) return 4; if (outIo.error()) return 4; return 0; } bool ExvImage::isThisType(BasicIo& iIo, bool advance) const { return isExvType(iIo, advance); } Image::AutoPtr newExvInstance(BasicIo::AutoPtr io, bool create) { Image::AutoPtr image; image = Image::AutoPtr(new ExvImage(io, create)); if (!image->good()) image.reset(); return image; } bool isExvType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[7]; iIo.read(tmpBuf, 7); if (iIo.error() || iIo.eof()) return false; if ( 0xff != tmpBuf[0] || 0x01 != tmpBuf[1] || memcmp(tmpBuf + 2, ExvImage::exiv2Id_, 5) != 0) { result = false; } if (!advance || !result) iIo.seek(-7, BasicIo::cur); return result; } } // namespace Exiv2