// SPDX-License-Identifier: GPL-2.0-or-later // included header files #include "config.h" #include "enforce.hpp" #include "error.hpp" #include "futils.hpp" #include "helper_functions.hpp" #include "image_int.hpp" #include "jpgimage.hpp" #include "photoshop.hpp" #include "safe_op.hpp" #ifdef _WIN32 #include #else #define BYTE char #define USHORT uint16_t #define ULONG uint32_t #endif #include "fff.h" #include #include // ***************************************************************************** // class member definitions namespace Exiv2 { namespace { // JPEG Segment markers (The first byte is always 0xFF, the value of these constants correspond to the 2nd byte) constexpr byte sos_ = 0xda; //!< JPEG SOS marker constexpr byte app0_ = 0xe0; //!< JPEG APP0 marker constexpr byte app1_ = 0xe1; //!< JPEG APP1 marker constexpr byte app2_ = 0xe2; //!< JPEG APP2 marker constexpr byte app13_ = 0xed; //!< JPEG APP13 marker constexpr byte com_ = 0xfe; //!< JPEG Comment marker // Markers without payload constexpr byte soi_ = 0xd8; ///!< SOI marker constexpr byte eoi_ = 0xd9; //!< JPEG EOI marker constexpr byte rst1_ = 0xd0; //!< JPEG Restart 0 Marker (from 0xD0 to 0xD7 there might be 8 of these markers) // Start of Frame markers, nondifferential Huffman-coding frames constexpr byte sof0_ = 0xc0; //!< JPEG Start-Of-Frame marker constexpr byte sof3_ = 0xc3; //!< JPEG Start-Of-Frame marker // Start of Frame markers, differential Huffman-coding frames constexpr byte sof5_ = 0xc5; //!< JPEG Start-Of-Frame marker // Start of Frame markers, differential arithmetic-coding frames constexpr byte sof15_ = 0xcf; //!< JPEG Start-Of-Frame marker constexpr auto exifId_ = "Exif\0\0"; //!< Exif identifier // constexpr auto jfifId_ = "JFIF\0"; //!< JFIF identifier constexpr auto xmpId_ = "http://ns.adobe.com/xap/1.0/\0"; //!< XMP packet identifier constexpr auto iccId_ = "ICC_PROFILE\0"; //!< ICC profile identifier inline bool inRange(int lo, int value, int hi) { return lo <= value && value <= hi; } inline bool inRange2(int value, int lo1, int hi1, int lo2, int hi2) { return inRange(lo1, value, hi1) || inRange(lo2, value, hi2); } /// @brief has the segment a non-zero payload? /// @param m The marker at the start of a segment /// @return true if the segment has a length field/payload bool markerHasLength(byte m) { bool markerWithoutLength = m >= rst1_ && m <= eoi_; return !markerWithoutLength; } std::pair, uint16_t> readSegmentSize(const byte marker, BasicIo& io) { std::array buf{0, 0}; // 2-byte buffer for reading the size. uint16_t size{0}; // Size of the segment, including the 2-byte size field if (markerHasLength(marker)) { io.readOrThrow(buf.data(), buf.size(), ErrorCode::kerFailedToReadImageData); size = getUShort(buf.data(), bigEndian); enforce(size >= 2, ErrorCode::kerFailedToReadImageData); } return {buf, size}; } } // namespace JpegBase::JpegBase(ImageType type, BasicIo::UniquePtr io, bool create, const byte initData[], size_t dataSize) : Image(type, mdExif | mdIptc | mdXmp | mdComment, std::move(io)) { if (create) { initImage(initData, dataSize); } } int JpegBase::initImage(const byte initData[], size_t dataSize) { if (io_->open() != 0) { return 4; } IoCloser closer(*io_); if (io_->write(initData, dataSize) != dataSize) { return 4; } return 0; } byte JpegBase::advanceToMarker(ErrorCode err) const { int c = -1; // Skips potential padding between markers while ((c = io_->getb()) != 0xff) { if (c == EOF) throw Error(err); } // Markers can start with any number of 0xff while ((c = io_->getb()) == 0xff) { } if (c == EOF) throw Error(err); return static_cast(c); } void JpegBase::readMetadata() { int rc = 0; // Todo: this should be the return value if (io_->open() != 0) throw Error(ErrorCode::kerDataSourceOpenFailed, io_->path(), strError()); IoCloser closer(*io_); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(ErrorCode::kerFailedToReadImageData); throw Error(ErrorCode::kerNotAJpeg); } clearMetadata(); int search = 6; // Exif, ICC, XMP, Comment, IPTC, SOF Blob psBlob; bool foundCompletePsData = false; bool foundExifData = false; bool foundXmpData = false; bool foundIccData = false; // Read section marker byte marker = advanceToMarker(ErrorCode::kerNotAJpeg); while (marker != sos_ && marker != eoi_ && search > 0) { const auto [sizebuf, size] = readSegmentSize(marker, *io_); // Read the rest of the segment. DataBuf buf(size); /// \todo check if it makes sense to check for size if (size > 0) { io_->readOrThrow(buf.data(2), size - 2, ErrorCode::kerFailedToReadImageData); std::copy(sizebuf.begin(), sizebuf.end(), buf.begin()); } if (!foundExifData && marker == app1_ && size >= 8 // prevent out-of-bounds read in memcmp on next line && buf.cmpBytes(2, exifId_, 6) == 0) { ByteOrder bo = ExifParser::decode(exifData_, buf.c_data(8), size - 8); setByteOrder(bo); if (size > 8 && byteOrder() == invalidByteOrder) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode Exif metadata.\n"; #endif exifData_.clear(); } --search; foundExifData = true; } else if (!foundXmpData && marker == app1_ && size >= 31 // prevent out-of-bounds read in memcmp on next line && buf.cmpBytes(2, xmpId_, 29) == 0) { xmpPacket_.assign(buf.c_str(31), size - 31); if (!xmpPacket_.empty() && XmpParser::decode(xmpData_, xmpPacket_)) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode XMP metadata.\n"; #endif } --search; foundXmpData = true; } else if (!foundCompletePsData && marker == app13_ && size >= 16 // prevent out-of-bounds read in memcmp on next line && buf.cmpBytes(2, Photoshop::ps3Id_, 14) == 0) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found app13 segment, size = " << size << "\n"; #endif if (buf.size() > 16) { // Append to psBlob append(psBlob, buf.c_data(16), size - 16); } // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(psBlob.data(), psBlob.size())) { --search; foundCompletePsData = true; } } else if (marker == com_ && comment_.empty()) { // JPEGs can have multiple comments, but for now only read // the first one (most jpegs only have one anyway). Comments // are simple single byte ISO-8859-1 strings. comment_.assign(buf.c_str(2), size - 2); while (comment_.length() && comment_.at(comment_.length() - 1) == '\0') { comment_.erase(comment_.length() - 1); } --search; } else if (marker == app2_ && size >= 13 // prevent out-of-bounds read in memcmp on next line && buf.cmpBytes(2, iccId_, 11) == 0) { if (size < 2 + 14 + 4) { rc = 8; break; } // ICC profile if (!foundIccData) { foundIccData = true; --search; } auto chunk = static_cast(buf.read_uint8(2 + 12)); auto chunks = static_cast(buf.read_uint8(2 + 13)); // ICC1v43_2010-12.pdf header is 14 bytes // header = "ICC_PROFILE\0" (12 bytes) // chunk/chunks are a single byte // Spec 7.2 Profile bytes 0-3 size uint32_t s = buf.read_uint32(2 + 14, bigEndian); #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found ICC Profile chunk " << chunk << " of " << chunks << (chunk == 1 ? " size: " : "") << (chunk == 1 ? s : 0) << std::endl; #endif // #1286 profile can be padded size_t icc_size = size - 2 - 14; if (chunk == 1 && chunks == 1) { enforce(s <= static_cast(icc_size), ErrorCode::kerInvalidIccProfile); icc_size = s; } DataBuf profile(Safe::add(iccProfile_.size(), icc_size)); if (!iccProfile_.empty()) { std::copy(iccProfile_.begin(), iccProfile_.end(), profile.begin()); } std::copy_n(buf.c_data(2 + 14), icc_size, profile.data() + iccProfile_.size()); setIccProfile(std::move(profile), chunk == chunks); } else if (pixelHeight_ == 0 && inRange2(marker, sof0_, sof3_, sof5_, sof15_)) { // We hit a SOFn (start-of-frame) marker if (size < 8) { rc = 7; break; } pixelHeight_ = buf.read_uint16(3, bigEndian); pixelWidth_ = buf.read_uint16(5, bigEndian); if (pixelHeight_ != 0) --search; } // Read the beginning of the next segment try { marker = advanceToMarker(ErrorCode::kerFailedToReadImageData); } catch (const Error&) { rc = 5; break; } } // while there are segments to process if (!psBlob.empty()) { // Find actual IPTC data within the psBlob Blob iptcBlob; const byte* record = nullptr; uint32_t sizeIptc = 0; uint32_t sizeHdr = 0; const byte* pCur = psBlob.data(); const byte* pEnd = pCur + psBlob.size(); while (pCur < pEnd && 0 == Photoshop::locateIptcIrb(pCur, pEnd - pCur, &record, sizeHdr, sizeIptc)) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found IPTC IRB, size = " << sizeIptc << "\n"; #endif if (sizeIptc) { append(iptcBlob, record + sizeHdr, sizeIptc); } pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1); } if (!iptcBlob.empty() && IptcParser::decode(iptcData_, iptcBlob.data(), iptcBlob.size())) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "Failed to decode IPTC metadata.\n"; #endif iptcData_.clear(); } } if (rc != 0) { #ifndef SUPPRESS_WARNINGS EXV_WARNING << "JPEG format error, rc = " << rc << "\n"; #endif } } // JpegBase::readMetadata #define REPORT_MARKER \ if ((option == kpsBasic || option == kpsRecursive)) \ out << Internal::stringFormat("%8ld | 0xff%02x %-5s", io_->tell() - 2, marker, nm[marker].c_str()) void JpegBase::printStructure(std::ostream& out, PrintStructureOption option, size_t depth) { if (io_->open() != 0) throw Error(ErrorCode::kerDataSourceOpenFailed, io_->path(), strError()); // Ensure that this is the correct image type if (!isThisType(*io_, false)) { if (io_->error() || io_->eof()) throw Error(ErrorCode::kerFailedToReadImageData); throw Error(ErrorCode::kerNotAJpeg); } bool bPrint = option == kpsBasic || option == kpsRecursive; std::vector> iptcDataSegs; if (bPrint || option == kpsXMP || option == kpsIccProfile || option == kpsIptcErase) { // mnemonic for markers std::string nm[256]; nm[0xd8] = "SOI"; nm[0xd9] = "EOI"; nm[0xda] = "SOS"; nm[0xdb] = "DQT"; nm[0xdd] = "DRI"; nm[0xfe] = "COM"; // 0xe0 .. 0xef are APPn // 0xc0 .. 0xcf are SOFn (except 4) nm[0xc4] = "DHT"; for (int i = 0; i <= 15; i++) { char MN[16]; snprintf(MN, sizeof(MN), "APP%d", i); nm[0xe0 + i] = MN; if (i != 4) { snprintf(MN, sizeof(MN), "SOF%d", i); nm[0xc0 + i] = MN; } } // Container for the signature bool bExtXMP = false; // Read section marker byte marker = advanceToMarker(ErrorCode::kerNotAJpeg); bool done = false; bool first = true; while (!done) { // print marker bytes if (first && bPrint) { out << "STRUCTURE OF JPEG FILE: " << io_->path() << std::endl; out << " address | marker | length | data" << std::endl; REPORT_MARKER; } first = false; bool bLF = bPrint; const auto [sizebuf, size] = readSegmentSize(marker, *io_); // Read the rest of the segment. DataBuf buf(size); if (size > 0) { io_->readOrThrow(buf.data(2), size - 2, ErrorCode::kerFailedToReadImageData); std::copy(sizebuf.begin(), sizebuf.end(), buf.begin()); } if (bPrint && markerHasLength(marker)) out << Internal::stringFormat(" | %7d ", size); // print signature for APPn if (marker >= app0_ && marker <= (app0_ | 0x0F)) { // http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf p75 const std::string signature = string_from_unterminated(buf.c_str(2), size - 2); // 728 rmills@rmillsmbp:~/gnu/exiv2/ttt $ exiv2 -pS test/data/exiv2-bug922.jpg // STRUCTURE OF JPEG FILE: test/data/exiv2-bug922.jpg // address | marker | length | data // 0 | 0xd8 SOI | 0 // 2 | 0xe1 APP1 | 911 | Exif..MM.*.......%.........#.... // 915 | 0xe1 APP1 | 870 | http://ns.adobe.com/xap/1.0/.(&xmp[start]), size - start); done = !bExtXMP; } else if (option == kpsIccProfile && signature == iccId_) { // extract ICCProfile if (size >= 16) { out.write(buf.c_str(16), size - 16); #ifdef EXIV2_DEBUG_MESSAGES std::cout << "iccProfile size = " << size - 16 << std::endl; #endif } } else if (option == kpsIptcErase && signature == "Photoshop 3.0") { // delete IPTC data segment from JPEG iptcDataSegs.emplace_back(io_->tell() - size, io_->tell()); } else if (bPrint) { const size_t start = 2; const size_t end = size > 34 ? 34 : size; out << "| " << Internal::binaryToString(makeSlice(buf, start, end)); if (signature == iccId_) { // extract the chunk information from the buffer // // the buffer looks like this in this branch // ICC_PROFILE\0AB // where A & B are bytes (the variables chunk & chunks) // // We cannot extract the variables A and B from the signature string, as they are beyond the // null termination (and signature ends there). // => Read the chunk info from the DataBuf directly enforce(size >= 16, "Buffer too small to extract chunk information."); const int chunk = buf.read_uint8(2 + 12); const int chunks = buf.read_uint8(2 + 13); out << Internal::stringFormat(" chunk %d/%d", chunk, chunks); } } // for MPF: http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/MPF.html // for FLIR: http://owl.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html bool bFlir = option == kpsRecursive && marker == (app0_ + 1) && signature == "FLIR"; bool bExif = option == kpsRecursive && marker == (app0_ + 1) && signature == "Exif"; bool bMPF = option == kpsRecursive && marker == (app0_ + 2) && signature == "MPF"; bool bPS = option == kpsRecursive && signature == "Photoshop 3.0"; if (bFlir || bExif || bMPF || bPS) { // extract Exif data block which is tiff formatted out << std::endl; // const byte* exif = buf.c_data(); uint32_t start = signature == "Exif" ? 8 : 6; uint32_t max = static_cast(size) - 1; // is this an fff block? if (bFlir) { start = 2; bFlir = false; while (start + 3 <= max) { if (std::strcmp(buf.c_str(start), "FFF") == 0) { bFlir = true; break; } start++; } } // there is a header in FLIR, followed by a tiff block // Hunt down the tiff using brute force if (bFlir) { // FLIRFILEHEAD* pFFF = (FLIRFILEHEAD*) (exif+start) ; while (start < max) { if (buf.read_uint8(start) == 'I' && buf.read_uint8(start + 1) == 'I') break; if (buf.read_uint8(start) == 'M' && buf.read_uint8(start + 1) == 'M') break; start++; } #ifdef EXIV2_DEBUG_MESSAGES if (start < max) std::cout << " FFF start = " << start << std::endl; // << " index = " << pFFF->dwIndexOff << std::endl; #endif } if (bPS) { IptcData::printStructure(out, makeSlice(buf, 0, size), depth); } else { if (start < max) { // create a copy on write memio object with the data, then print the structure MemIo p(buf.c_data(start), size - start); printTiffStructure(p, out, option, depth + 1); } } // restore and clean up bLF = false; } } // print COM marker if (bPrint && marker == com_) { // size includes 2 for the two bytes for size! const size_t n = (size - 2) > 32 ? 32 : size - 2; // start after the two bytes out << "| " << Internal::binaryToString(makeSlice(buf, 2, n + 2 /* cannot overflow as n is at most size - 2 */)); } if (bLF) out << std::endl; if (marker != sos_) { // Read the beginning of the next segment marker = advanceToMarker(ErrorCode::kerNoImageInInputData); REPORT_MARKER; } done |= marker == eoi_ || marker == sos_; if (done && bPrint) out << std::endl; } } if (option == kpsIptcErase && !iptcDataSegs.empty()) { // Add a sentinel to the end of iptcDataSegs iptcDataSegs.emplace_back(io_->size(), 0); // $ dd bs=1 skip=$((0)) count=$((13164)) if=ETH0138028.jpg of=E1.jpg // $ dd bs=1 skip=$((49304)) count=2000000 if=ETH0138028.jpg of=E2.jpg // cat E1.jpg E2.jpg > E.jpg // exiv2 -pS E.jpg // binary copy io_ to a temporary file MemIo tempIo; size_t start = 0; for (const auto& p : iptcDataSegs) { const size_t length = p.first - start; io_->seekOrThrow(start, BasicIo::beg, ErrorCode::kerFailedToReadImageData); DataBuf buf(length); io_->readOrThrow(buf.data(), buf.size(), ErrorCode::kerFailedToReadImageData); tempIo.write(buf.c_data(), buf.size()); start = p.second + 2; // skip the 2 byte marker } io_->seekOrThrow(0, BasicIo::beg, ErrorCode::kerFailedToReadImageData); io_->transfer(tempIo); // may throw io_->seekOrThrow(0, BasicIo::beg, ErrorCode::kerFailedToReadImageData); // Check that the result is correctly formatted. readMetadata(); } } // JpegBase::printStructure void JpegBase::writeMetadata() { if (io_->open() != 0) { throw Error(ErrorCode::kerDataSourceOpenFailed, io_->path(), strError()); } IoCloser closer(*io_); MemIo tempIo; doWriteMetadata(tempIo); // may throw io_->close(); io_->transfer(tempIo); // may throw } DataBuf JpegBase::readNextSegment(byte marker) { const auto [sizebuf, size] = readSegmentSize(marker, *io_); // Read the rest of the segment. DataBuf buf(size); if (size > 0) { io_->readOrThrow(buf.data(2), size - 2, ErrorCode::kerFailedToReadImageData); std::copy(sizebuf.begin(), sizebuf.end(), buf.begin()); } return buf; } void JpegBase::doWriteMetadata(BasicIo& outIo) { if (!io_->isopen()) throw Error(ErrorCode::kerInputDataReadFailed); if (!outIo.isopen()) throw Error(ErrorCode::kerImageWriteFailed); // Ensure that this is the correct image type if (!isThisType(*io_, true)) { if (io_->error() || io_->eof()) throw Error(ErrorCode::kerInputDataReadFailed); throw Error(ErrorCode::kerNoImageInInputData); } // Used to initialize search variables such as skipCom. static const size_t notfound = std::numeric_limits::max(); const size_t seek = io_->tell(); size_t count = 0; size_t search = 0; size_t insertPos = 0; size_t comPos = 0; size_t skipApp1Exif = notfound; size_t skipApp1Xmp = notfound; bool foundCompletePsData = false; bool foundIccData = false; std::vector skipApp13Ps3; std::vector skipApp2Icc; size_t skipCom = notfound; Blob psBlob; DataBuf rawExif; xmpData().usePacket(writeXmpFromPacket()); // Write image header if (writeHeader(outIo)) throw Error(ErrorCode::kerImageWriteFailed); // Read section marker byte marker = advanceToMarker(ErrorCode::kerNoImageInInputData); // First find segments of interest. Normally app0 is first and we want // to insert after it. But if app0 comes after com, app1 and app13 then // don't bother. while (marker != sos_ && marker != eoi_ && search < 6) { DataBuf buf = readNextSegment(marker); if (marker == app0_) { insertPos = count + 1; } else if (skipApp1Exif == notfound && marker == app1_ && buf.size() >= 8 && // prevent out-of-bounds read in memcmp on next line buf.cmpBytes(2, exifId_, 6) == 0) { skipApp1Exif = count; ++search; if (buf.size() > 8) { rawExif.alloc(buf.size() - 8); std::copy_n(buf.c_data(8), rawExif.size(), rawExif.begin()); } } else if (skipApp1Xmp == notfound && marker == app1_ && buf.size() >= 31 && // prevent out-of-bounds read in memcmp on next line buf.cmpBytes(2, xmpId_, 29) == 0) { skipApp1Xmp = count; ++search; } else if (marker == app2_ && buf.size() >= 13 && // prevent out-of-bounds read in memcmp on next line buf.cmpBytes(2, iccId_, 11) == 0) { skipApp2Icc.push_back(count); if (!foundIccData) { ++search; foundIccData = true; } } else if (!foundCompletePsData && marker == app13_ && buf.size() >= 16 && // prevent out-of-bounds read in memcmp on next line buf.cmpBytes(2, Photoshop::ps3Id_, 14) == 0) { #ifdef EXIV2_DEBUG_MESSAGES std::cerr << "Found APP13 Photoshop PS3 segment\n"; #endif skipApp13Ps3.push_back(count); // Append to psBlob append(psBlob, buf.c_data(16), buf.size() - 16); // Check whether psBlob is complete if (!psBlob.empty() && Photoshop::valid(psBlob.data(), psBlob.size())) { foundCompletePsData = true; } } else if (marker == com_ && skipCom == notfound) { // Jpegs can have multiple comments, but for now only handle // the first one (most jpegs only have one anyway). skipCom = count; ++search; } // As in jpeg-6b/wrjpgcom.c: // We will insert the new comment marker just before SOFn. // This (a) causes the new comment to appear after, rather than before, // existing comments; and (b) ensures that comments come after any JFIF // or JFXX markers, as required by the JFIF specification. if (comPos == 0 && inRange2(marker, sof0_, sof3_, sof5_, sof15_)) { comPos = count; ++search; } marker = advanceToMarker(ErrorCode::kerNoImageInInputData); ++count; } if (!foundCompletePsData && !psBlob.empty()) throw Error(ErrorCode::kerNoImageInInputData); search += skipApp13Ps3.size() + skipApp2Icc.size(); if (comPos == 0) { if (marker == eoi_) comPos = count; else comPos = insertPos; ++search; } if (!exifData_.empty()) ++search; if (!writeXmpFromPacket() && !xmpData_.empty()) ++search; if (writeXmpFromPacket() && !xmpPacket_.empty()) ++search; if (foundCompletePsData || !iptcData_.empty()) ++search; if (!comment_.empty()) ++search; io_->seekOrThrow(seek, BasicIo::beg, ErrorCode::kerNoImageInInputData); count = 0; marker = advanceToMarker(ErrorCode::kerNoImageInInputData); // To simplify this a bit, new segments are inserts at either the start // or right after app0. This is standard in most jpegs, but has the // potential to change segment ordering (which is allowed). // Segments are erased if there is no assigned metadata. while (marker != sos_ && search > 0) { DataBuf buf = readNextSegment(marker); if (insertPos == count) { // Write Exif data first so that - if there is no app0 - we // create "Exif images" according to the Exif standard. if (!exifData_.empty()) { Blob blob; ByteOrder bo = byteOrder(); if (bo == invalidByteOrder) { bo = littleEndian; setByteOrder(bo); } const byte* pExifData = rawExif.c_data(); size_t exifSize = rawExif.size(); WriteMethod wm = ExifParser::encode(blob, pExifData, exifSize, bo, exifData_); if (wm == wmIntrusive) { pExifData = !blob.empty() ? blob.data() : nullptr; exifSize = blob.size(); } if (exifSize > 0) { std::array tmpBuf; // Write APP1 marker, size of APP1 field, Exif id and Exif data tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (exifSize > 0xffff - 8) throw Error(ErrorCode::kerTooLargeJpegSegment, "Exif"); us2Data(tmpBuf.data() + 2, static_cast(exifSize + 8), bigEndian); std::memcpy(tmpBuf.data() + 4, exifId_, 6); if (outIo.write(tmpBuf.data(), 10) != 10) throw Error(ErrorCode::kerImageWriteFailed); // Write new Exif data buffer if (outIo.write(pExifData, exifSize) != exifSize) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); --search; } } if (!writeXmpFromPacket() && XmpParser::encode(xmpPacket_, xmpData_, XmpParser::useCompactFormat | XmpParser::omitAllFormatting) > 1) { #ifndef SUPPRESS_WARNINGS EXV_ERROR << "Failed to encode XMP metadata.\n"; #endif } if (!xmpPacket_.empty()) { std::array tmpBuf; // Write APP1 marker, size of APP1 field, XMP id and XMP packet tmpBuf[0] = 0xff; tmpBuf[1] = app1_; if (xmpPacket_.size() > 0xffff - 31) throw Error(ErrorCode::kerTooLargeJpegSegment, "XMP"); us2Data(tmpBuf.data() + 2, static_cast(xmpPacket_.size() + 31), bigEndian); std::memcpy(tmpBuf.data() + 4, xmpId_, 29); if (outIo.write(tmpBuf.data(), 33) != 33) throw Error(ErrorCode::kerImageWriteFailed); // Write new XMP packet if (outIo.write(reinterpret_cast(xmpPacket_.data()), xmpPacket_.size()) != xmpPacket_.size()) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); --search; } if (iccProfileDefined()) { std::array tmpBuf; // Write APP2 marker, size of APP2 field, and IccProfile // See comments in readMetadata() about the ICC embedding specification tmpBuf[0] = 0xff; tmpBuf[1] = app2_; const size_t chunk_size = 256 * 256 - 40; // leave bytes for marker, header and padding size_t size = iccProfile_.size(); if (size >= 255 * chunk_size) throw Error(ErrorCode::kerTooLargeJpegSegment, "IccProfile"); const size_t chunks = 1 + (size - 1) / chunk_size; for (size_t chunk = 0; chunk < chunks; chunk++) { size_t bytes = size > chunk_size ? chunk_size : size; // bytes to write size -= bytes; // write JPEG marker (2 bytes) if (outIo.write(tmpBuf.data(), 2) != 2) throw Error(ErrorCode::kerImageWriteFailed); // JPEG Marker // write length (2 bytes). length includes the 2 bytes for the length us2Data(tmpBuf.data() + 2, static_cast(2 + 14 + bytes), bigEndian); if (outIo.write(tmpBuf.data() + 2, 2) != 2) throw Error(ErrorCode::kerImageWriteFailed); // JPEG Length // write the ICC_PROFILE header (14 bytes) uint8_t pad[2]; pad[0] = static_cast(chunk + 1); pad[1] = static_cast(chunks); outIo.write(reinterpret_cast(iccId_), 12); outIo.write(reinterpret_cast(pad), 2); if (outIo.write(iccProfile_.c_data(chunk * chunk_size), bytes) != bytes) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); } --search; } if (foundCompletePsData || !iptcData_.empty()) { // Set the new IPTC IRB, keeps existing IRBs but removes the // IPTC block if there is no new IPTC data to write DataBuf newPsData = Photoshop::setIptcIrb(psBlob.data(), psBlob.size(), iptcData_); const size_t maxChunkSize = 0xffff - 16; const byte* chunkStart = newPsData.empty() ? nullptr : newPsData.c_data(); const byte* chunkEnd = newPsData.empty() ? nullptr : newPsData.c_data(newPsData.size() - 1); while (chunkStart < chunkEnd) { // Determine size of next chunk size_t chunkSize = (chunkEnd + 1 - chunkStart); if (chunkSize > maxChunkSize) { chunkSize = maxChunkSize; // Don't break at a valid IRB boundary const auto writtenSize = chunkStart - newPsData.c_data(); if (Photoshop::valid(newPsData.c_data(), writtenSize + chunkSize)) { // Since an IRB has minimum size 12, // (chunkSize - 8) can't be also a IRB boundary chunkSize -= 8; } } // Write APP13 marker, chunk size, and ps3Id std::array tmpBuf; tmpBuf[0] = 0xff; tmpBuf[1] = app13_; us2Data(tmpBuf.data() + 2, static_cast(chunkSize + 16), bigEndian); std::memcpy(tmpBuf.data() + 4, Photoshop::ps3Id_, 14); if (outIo.write(tmpBuf.data(), 18) != 18) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); // Write next chunk of the Photoshop IRB data buffer if (outIo.write(chunkStart, chunkSize) != chunkSize) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); chunkStart += chunkSize; } --search; } } if (comPos == count) { if (!comment_.empty()) { std::array tmpBuf; // Write COM marker, size of comment, and string tmpBuf[0] = 0xff; tmpBuf[1] = com_; if (comment_.length() > 0xffff - 3) throw Error(ErrorCode::kerTooLargeJpegSegment, "JPEG comment"); us2Data(tmpBuf.data() + 2, static_cast(comment_.length() + 3), bigEndian); if (outIo.write(tmpBuf.data(), 4) != 4) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.write(reinterpret_cast(const_cast(comment_.data())), comment_.length()) != comment_.length()) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.putb(0) == EOF) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); --search; } --search; } if (marker == eoi_) { break; } if (skipApp1Exif == count || skipApp1Xmp == count || std::find(skipApp13Ps3.begin(), skipApp13Ps3.end(), count) != skipApp13Ps3.end() || std::find(skipApp2Icc.begin(), skipApp2Icc.end(), count) != skipApp2Icc.end() || skipCom == count) { --search; } else { std::array tmpBuf; // Write marker and a copy of the segment. tmpBuf[0] = 0xff; tmpBuf[1] = marker; if (outIo.write(tmpBuf.data(), 2) != 2) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.write(buf.c_data(), buf.size()) != buf.size()) throw Error(ErrorCode::kerImageWriteFailed); if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); } // Next marker marker = advanceToMarker(ErrorCode::kerNoImageInInputData); ++count; } // Populate the fake data, only make sense for remoteio, httpio and sshio. // it avoids allocating memory for parts of the file that contain image-date. io_->populateFakeData(); // Write the final marker, then copy rest of the Io. byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = marker; if (outIo.write(tmpBuf, 2) != 2) throw Error(ErrorCode::kerImageWriteFailed); DataBuf buf(4096); size_t readSize = 0; while ((readSize = io_->read(buf.data(), buf.size()))) { if (outIo.write(buf.c_data(), readSize) != readSize) throw Error(ErrorCode::kerImageWriteFailed); } if (outIo.error()) throw Error(ErrorCode::kerImageWriteFailed); } // JpegBase::doWriteMetadata const byte JpegImage::blank_[] = { 0xFF, 0xD8, 0xFF, 0xDB, 0x00, 0x84, 0x00, 0x10, 0x0B, 0x0B, 0x0B, 0x0C, 0x0B, 0x10, 0x0C, 0x0C, 0x10, 0x17, 0x0F, 0x0D, 0x0F, 0x17, 0x1B, 0x14, 0x10, 0x10, 0x14, 0x1B, 0x1F, 0x17, 0x17, 0x17, 0x17, 0x17, 0x1F, 0x1E, 0x17, 0x1A, 0x1A, 0x1A, 0x1A, 0x17, 0x1E, 0x1E, 0x23, 0x25, 0x27, 0x25, 0x23, 0x1E, 0x2F, 0x2F, 0x33, 0x33, 0x2F, 0x2F, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x01, 0x11, 0x0F, 0x0F, 0x11, 0x13, 0x11, 0x15, 0x12, 0x12, 0x15, 0x14, 0x11, 0x14, 0x11, 0x14, 0x1A, 0x14, 0x16, 0x16, 0x14, 0x1A, 0x26, 0x1A, 0x1A, 0x1C, 0x1A, 0x1A, 0x26, 0x30, 0x23, 0x1E, 0x1E, 0x1E, 0x1E, 0x23, 0x30, 0x2B, 0x2E, 0x27, 0x27, 0x27, 0x2E, 0x2B, 0x35, 0x35, 0x30, 0x30, 0x35, 0x35, 0x40, 0x40, 0x3F, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0xFF, 0xC0, 0x00, 0x11, 0x08, 0x00, 0x01, 0x00, 0x01, 0x03, 0x01, 0x22, 0x00, 0x02, 0x11, 0x01, 0x03, 0x11, 0x01, 0xFF, 0xC4, 0x00, 0x4B, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xDA, 0x00, 0x0C, 0x03, 0x01, 0x00, 0x02, 0x11, 0x03, 0x11, 0x00, 0x3F, 0x00, 0xA0, 0x00, 0x0F, 0xFF, 0xD9}; JpegImage::JpegImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::jpeg, std::move(io), create, blank_, sizeof(blank_)) { } std::string JpegImage::mimeType() const { return "image/jpeg"; } int JpegImage::writeHeader(BasicIo& outIo) const { // Jpeg header byte tmpBuf[2]; tmpBuf[0] = 0xff; tmpBuf[1] = soi_; if (outIo.write(tmpBuf, 2) != 2) return 4; if (outIo.error()) return 4; return 0; } bool JpegImage::isThisType(BasicIo& iIo, bool advance) const { return isJpegType(iIo, advance); } Image::UniquePtr newJpegInstance(BasicIo::UniquePtr io, bool create) { auto image = std::make_unique(std::move(io), create); if (!image->good()) { image.reset(); } return image; } bool isJpegType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[2]; iIo.read(tmpBuf, 2); if (iIo.error() || iIo.eof()) return false; if (0xff != tmpBuf[0] || soi_ != tmpBuf[1]) { result = false; } if (!advance || !result) iIo.seek(-2, BasicIo::cur); return result; } ExvImage::ExvImage(BasicIo::UniquePtr io, bool create) : JpegBase(ImageType::exv, std::move(io), create, blank_, sizeof(blank_)) { } std::string ExvImage::mimeType() const { return "image/x-exv"; } int ExvImage::writeHeader(BasicIo& outIo) const { // Exv header byte tmpBuf[7]; tmpBuf[0] = 0xff; tmpBuf[1] = 0x01; std::memcpy(tmpBuf + 2, exiv2Id_, 5); if (outIo.write(tmpBuf, 7) != 7) return 4; if (outIo.error()) return 4; return 0; } bool ExvImage::isThisType(BasicIo& iIo, bool advance) const { return isExvType(iIo, advance); } Image::UniquePtr newExvInstance(BasicIo::UniquePtr io, bool create) { auto image = std::make_unique(std::move(io), create); if (!image->good()) image.reset(); return image; } bool isExvType(BasicIo& iIo, bool advance) { bool result = true; byte tmpBuf[7]; iIo.read(tmpBuf, 7); if (iIo.error() || iIo.eof()) return false; if (0xff != tmpBuf[0] || 0x01 != tmpBuf[1] || memcmp(tmpBuf + 2, ExvImage::exiv2Id_, 5) != 0) { result = false; } if (!advance || !result) iIo.seek(-7, BasicIo::cur); return result; } } // namespace Exiv2