You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exiv2/src/tiffvisitor_int.cpp

1432 lines
46 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
// included header files
#include "config.h"
#include "enforce.hpp"
#include "exif.hpp"
#include "iptc.hpp"
#include "jpgimage.hpp"
#include "makernote_int.hpp"
#include "photoshop.hpp"
#include "safe_op.hpp"
#include "sonymn_int.hpp"
#include "tiffcomposite_int.hpp" // Do not change the order of these 2 includes,
#include "tiffimage_int.hpp"
#include "tiffvisitor_int.hpp" // see bug #487
#include "value.hpp"
#include <functional>
#include <iostream>
// *****************************************************************************
namespace {
//! Unary predicate that matches an Exifdatum with a given group and index.
class FindExifdatum2 {
public:
//! Constructor, initializes the object with the group and index to look for.
FindExifdatum2(Exiv2::IfdId group, int idx) : groupName_(Exiv2::Internal::groupName(group)), idx_(idx) {
}
//! Returns true if group and index match.
bool operator()(const Exiv2::Exifdatum& md) const {
return idx_ == md.idx() && md.groupName() == groupName_;
}
private:
const char* groupName_;
int idx_;
}; // class FindExifdatum2
Exiv2::ByteOrder stringToByteOrder(const std::string& val) {
if (val == "II")
return Exiv2::littleEndian;
if (val == "MM")
return Exiv2::bigEndian;
return Exiv2::invalidByteOrder;
}
} // namespace
// *****************************************************************************
// class member definitions
namespace Exiv2::Internal {
void TiffVisitor::setGo(GoEvent event, bool go) {
go_[event] = go;
}
bool TiffVisitor::go(GoEvent event) const {
return go_[event];
}
void TiffVisitor::visitDirectoryNext(TiffDirectory* /*object*/) {
}
void TiffVisitor::visitDirectoryEnd(TiffDirectory* /*object*/) {
}
void TiffVisitor::visitIfdMakernoteEnd(TiffIfdMakernote* /*object*/) {
}
void TiffVisitor::visitBinaryArrayEnd(TiffBinaryArray* /*object*/) {
}
void TiffFinder::init(uint16_t tag, IfdId group) {
tag_ = tag;
group_ = group;
tiffComponent_ = nullptr;
setGo(geTraverse, true);
}
void TiffFinder::findObject(TiffComponent* object) {
if (object->tag() == tag_ && object->group() == group_) {
tiffComponent_ = object;
setGo(geTraverse, false);
}
}
void TiffFinder::visitEntry(TiffEntry* object) {
findObject(object);
}
void TiffFinder::visitDataEntry(TiffDataEntry* object) {
findObject(object);
}
void TiffFinder::visitImageEntry(TiffImageEntry* object) {
findObject(object);
}
void TiffFinder::visitSizeEntry(TiffSizeEntry* object) {
findObject(object);
}
void TiffFinder::visitDirectory(TiffDirectory* object) {
findObject(object);
}
void TiffFinder::visitSubIfd(TiffSubIfd* object) {
findObject(object);
}
void TiffFinder::visitMnEntry(TiffMnEntry* object) {
findObject(object);
}
void TiffFinder::visitIfdMakernote(TiffIfdMakernote* object) {
findObject(object);
}
void TiffFinder::visitBinaryArray(TiffBinaryArray* object) {
findObject(object);
}
void TiffFinder::visitBinaryElement(TiffBinaryElement* object) {
findObject(object);
}
TiffCopier::TiffCopier(TiffComponent* pRoot, uint32_t root, const TiffHeaderBase* pHeader,
const PrimaryGroups* pPrimaryGroups) :
pRoot_(pRoot), root_(root), pHeader_(pHeader), pPrimaryGroups_(pPrimaryGroups) {
}
void TiffCopier::copyObject(const TiffComponent* object) {
if (pHeader_->isImageTag(object->tag(), object->group(), pPrimaryGroups_)) {
auto clone = object->clone();
// Assumption is that the corresponding TIFF entry doesn't exist
auto tiffPath = TiffCreator::getPath(object->tag(), object->group(), root_);
pRoot_->addPath(object->tag(), tiffPath, pRoot_, std::move(clone));
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "Copied " << key << "\n";
#endif
}
}
void TiffCopier::visitEntry(TiffEntry* object) {
copyObject(object);
}
void TiffCopier::visitDataEntry(TiffDataEntry* object) {
copyObject(object);
}
void TiffCopier::visitImageEntry(TiffImageEntry* object) {
copyObject(object);
}
void TiffCopier::visitSizeEntry(TiffSizeEntry* object) {
copyObject(object);
}
void TiffCopier::visitDirectory(TiffDirectory* /*object*/) {
// Do not copy directories (avoids problems with SubIfds)
}
void TiffCopier::visitSubIfd(TiffSubIfd* object) {
copyObject(object);
}
void TiffCopier::visitMnEntry(TiffMnEntry* object) {
copyObject(object);
}
void TiffCopier::visitIfdMakernote(TiffIfdMakernote* object) {
copyObject(object);
}
void TiffCopier::visitBinaryArray(TiffBinaryArray* object) {
copyObject(object);
}
void TiffCopier::visitBinaryElement(TiffBinaryElement* object) {
copyObject(object);
}
TiffDecoder::TiffDecoder(ExifData& exifData, IptcData& iptcData, XmpData& xmpData, TiffComponent* pRoot,
FindDecoderFct findDecoderFct) :
exifData_(exifData), iptcData_(iptcData), xmpData_(xmpData), pRoot_(pRoot), findDecoderFct_(findDecoderFct) {
// #1402 Fujifilm RAF. Search for the make
// Find camera make in existing metadata (read from the JPEG)
ExifKey key("Exif.Image.Make");
if (exifData_.findKey(key) != exifData_.end()) {
make_ = exifData_.findKey(key)->toString();
} else {
// Find camera make by looking for tag 0x010f in IFD0
TiffFinder finder(0x010f, IfdId::ifd0Id);
pRoot_->accept(finder);
auto te = dynamic_cast<const TiffEntryBase*>(finder.result());
if (te && te->pValue()) {
make_ = te->pValue()->toString();
}
}
}
void TiffDecoder::visitEntry(TiffEntry* object) {
decodeTiffEntry(object);
}
void TiffDecoder::visitDataEntry(TiffDataEntry* object) {
decodeTiffEntry(object);
}
void TiffDecoder::visitImageEntry(TiffImageEntry* object) {
decodeTiffEntry(object);
}
void TiffDecoder::visitSizeEntry(TiffSizeEntry* object) {
decodeTiffEntry(object);
}
void TiffDecoder::visitDirectory(TiffDirectory* /* object */) {
// Nothing to do
}
void TiffDecoder::visitSubIfd(TiffSubIfd* object) {
decodeTiffEntry(object);
}
void TiffDecoder::visitMnEntry(TiffMnEntry* object) {
// Always decode binary makernote tag
decodeTiffEntry(object);
}
void TiffDecoder::visitIfdMakernote(TiffIfdMakernote* object) {
exifData_["Exif.MakerNote.Offset"] = static_cast<uint32_t>(object->mnOffset());
switch (object->byteOrder()) {
case littleEndian:
exifData_["Exif.MakerNote.ByteOrder"] = "II";
break;
case bigEndian:
exifData_["Exif.MakerNote.ByteOrder"] = "MM";
break;
case invalidByteOrder:
break;
}
}
void TiffDecoder::getObjData(const byte*& pData, size_t& size, uint16_t tag, IfdId group, const TiffEntryBase* object) {
if (object && object->tag() == tag && object->group() == group) {
pData = object->pData();
size = object->size();
return;
}
TiffFinder finder(tag, group);
pRoot_->accept(finder);
if (auto te = dynamic_cast<const TiffEntryBase*>(finder.result())) {
pData = te->pData();
size = te->size();
return;
}
}
void TiffDecoder::decodeXmp(const TiffEntryBase* object) {
// add Exif tag anyway
decodeStdTiffEntry(object);
const byte* pData = nullptr;
size_t size = 0;
getObjData(pData, size, 0x02bc, IfdId::ifd0Id, object);
if (pData) {
std::string xmpPacket;
xmpPacket.assign(reinterpret_cast<const char*>(pData), size);
std::string::size_type idx = xmpPacket.find_first_of('<');
if (idx != std::string::npos && idx > 0) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Removing " << idx << " characters from the beginning of the XMP packet\n";
#endif
xmpPacket = xmpPacket.substr(idx);
}
if (XmpParser::decode(xmpData_, xmpPacket)) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode XMP metadata.\n";
#endif
}
}
} // TiffDecoder::decodeXmp
void TiffDecoder::decodeIptc(const TiffEntryBase* object) {
// add Exif tag anyway
decodeStdTiffEntry(object);
// All tags are read at this point, so the first time we come here,
// find the relevant IPTC tag and decode IPTC if found
if (decodedIptc_) {
return;
}
decodedIptc_ = true;
// 1st choice: IPTCNAA
const byte* pData = nullptr;
size_t size = 0;
getObjData(pData, size, 0x83bb, IfdId::ifd0Id, object);
if (pData) {
if (0 == IptcParser::decode(iptcData_, pData, size)) {
return;
}
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode IPTC block found in "
<< "Directory Image, entry 0x83bb\n";
#endif
}
// 2nd choice if no IPTCNAA record found or failed to decode it:
// ImageResources
pData = nullptr;
size = 0;
getObjData(pData, size, 0x8649, IfdId::ifd0Id, object);
if (pData) {
const byte* record = nullptr;
uint32_t sizeHdr = 0;
uint32_t sizeData = 0;
if (0 != Photoshop::locateIptcIrb(pData, size, &record, sizeHdr, sizeData)) {
return;
}
if (0 == IptcParser::decode(iptcData_, record + sizeHdr, sizeData)) {
return;
}
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode IPTC block found in "
<< "Directory Image, entry 0x8649\n";
#endif
}
} // TiffMetadataDecoder::decodeIptc
static const TagInfo* findTag(const TagInfo* pList, uint16_t tag) {
while (pList->tag_ != 0xffff && pList->tag_ != tag)
pList++;
return pList->tag_ != 0xffff ? pList : nullptr;
}
TiffDataEntryBase::TiffDataEntryBase(uint16_t tag, IfdId group, uint16_t szTag, IfdId szGroup) :
TiffEntryBase(tag, group), szTag_(szTag), szGroup_(szGroup) {
}
void TiffDecoder::decodeCanonAFInfo(const TiffEntryBase* object) {
// report Exif.Canon.AFInfo as usual
TiffDecoder::decodeStdTiffEntry(object);
if (object->pValue()->count() < 3 || object->pValue()->typeId() != unsignedShort)
return; // insufficient data
// create vector of signedShorts from unsignedShorts in Exif.Canon.AFInfo
std::vector<int16_t> ints;
std::vector<uint16_t> uint;
for (size_t i = 0; i < object->pValue()->count(); i++) {
ints.push_back(static_cast<int16_t>(object->pValue()->toInt64(i)));
uint.push_back(static_cast<uint16_t>(object->pValue()->toInt64(i)));
}
// Check this is AFInfo2 (ints[0] = bytes in object)
if (ints.at(0) != static_cast<int16_t>(object->pValue()->count()) * 2)
return;
std::string familyGroup(std::string("Exif.") + groupName(object->group()) + ".");
const uint16_t nPoints = uint.at(2);
const uint16_t nMasks = (nPoints + 15) / (sizeof(uint16_t) * 8);
int nStart = 0;
const struct record {
uint16_t tag;
uint16_t size;
bool bSigned;
} records[] = {
{0x2600, 1, true}, // AFInfoSize
{0x2601, 1, true}, // AFAreaMode
{0x2602, 1, true}, // AFNumPoints
{0x2603, 1, true}, // AFValidPoints
{0x2604, 1, true}, // AFCanonImageWidth
{0x2605, 1, true}, // AFCanonImageHeight
{0x2606, 1, true}, // AFImageWidth"
{0x2607, 1, true}, // AFImageHeight
{0x2608, nPoints, true}, // AFAreaWidths
{0x2609, nPoints, true}, // AFAreaHeights
{0x260a, nPoints, true}, // AFXPositions
{0x260b, nPoints, true}, // AFYPositions
{0x260c, nMasks, false}, // AFPointsInFocus
{0x260d, nMasks, false}, // AFPointsSelected
{0x260e, nMasks, false}, // AFPointsUnusable
};
// check we have enough data!
uint16_t count = 0;
for (const auto& [tag, size, bSigned] : records) {
count += size;
if (count > ints.size())
return;
}
for (const auto& [tag, size, bSigned] : records) {
const TagInfo* pTags = ExifTags::tagList("Canon");
const TagInfo* pTag = findTag(pTags, tag);
if (pTag) {
auto v = Exiv2::Value::create(bSigned ? Exiv2::signedShort : Exiv2::unsignedShort);
std::ostringstream s;
if (bSigned) {
for (uint16_t k = 0; k < size; k++)
s << " " << ints.at(nStart++);
} else {
for (uint16_t k = 0; k < size; k++)
s << " " << uint.at(nStart++);
}
v->read(s.str());
exifData_[familyGroup + pTag->name_] = *v;
}
}
}
void TiffDecoder::decodeTiffEntry(const TiffEntryBase* object) {
// Don't decode the entry if value is not set
if (!object->pValue())
return;
// skip decoding if decoderFct == 0
if (auto decoderFct = findDecoderFct_(make_, object->tag(), object->group()))
std::invoke(decoderFct, *this, object);
} // TiffDecoder::decodeTiffEntry
void TiffDecoder::decodeStdTiffEntry(const TiffEntryBase* object) {
ExifKey key(object->tag(), groupName(object->group()));
key.setIdx(object->idx());
exifData_.add(key, object->pValue());
} // TiffDecoder::decodeTiffEntry
void TiffDecoder::visitBinaryArray(TiffBinaryArray* object) {
if (!object->cfg() || !object->decoded()) {
decodeTiffEntry(object);
}
}
void TiffDecoder::visitBinaryElement(TiffBinaryElement* object) {
decodeTiffEntry(object);
}
TiffEncoder::TiffEncoder(ExifData& exifData, IptcData& iptcData, XmpData& xmpData, TiffComponent* pRoot,
const bool isNewImage, const PrimaryGroups* pPrimaryGroups, const TiffHeaderBase* pHeader,
FindEncoderFct findEncoderFct) :
exifData_(exifData),
iptcData_(iptcData),
xmpData_(xmpData),
pHeader_(pHeader),
pRoot_(pRoot),
isNewImage_(isNewImage),
pPrimaryGroups_(pPrimaryGroups),
byteOrder_(pHeader->byteOrder()),
origByteOrder_(byteOrder_),
findEncoderFct_(findEncoderFct) {
encodeIptc();
encodeXmp();
// Find camera make
ExifKey key("Exif.Image.Make");
if (auto pos = exifData_.findKey(key); pos != exifData_.end()) {
make_ = pos->toString();
}
if (make_.empty() && pRoot_) {
TiffFinder finder(0x010f, IfdId::ifd0Id);
pRoot_->accept(finder);
auto te = dynamic_cast<const TiffEntryBase*>(finder.result());
if (te && te->pValue()) {
make_ = te->pValue()->toString();
}
}
}
void TiffEncoder::encodeIptc() {
// Update IPTCNAA Exif tag, if it exists. Delete the tag if there
// is no IPTC data anymore.
// If there is new IPTC data and Exif.Image.ImageResources does
// not exist, create a new IPTCNAA Exif tag.
bool del = false;
ExifKey iptcNaaKey("Exif.Image.IPTCNAA");
auto pos = exifData_.findKey(iptcNaaKey);
if (pos != exifData_.end()) {
iptcNaaKey.setIdx(pos->idx());
exifData_.erase(pos);
del = true;
}
DataBuf rawIptc = IptcParser::encode(iptcData_);
ExifKey irbKey("Exif.Image.ImageResources");
pos = exifData_.findKey(irbKey);
if (pos != exifData_.end()) {
irbKey.setIdx(pos->idx());
}
if (!rawIptc.empty() && (del || pos == exifData_.end())) {
auto value = Value::create(unsignedLong);
DataBuf buf;
if (rawIptc.size() % 4 != 0) {
// Pad the last unsignedLong value with 0s
buf.alloc((rawIptc.size() / 4) * 4 + 4);
std::move(rawIptc.begin(), rawIptc.end(), buf.begin());
} else {
buf = std::move(rawIptc); // Note: This resets rawIptc
}
value->read(buf.data(), buf.size(), byteOrder_);
Exifdatum iptcDatum(iptcNaaKey, value.get());
exifData_.add(iptcDatum);
pos = exifData_.findKey(irbKey); // needed after add()
}
// Also update IPTC IRB in Exif.Image.ImageResources if it exists,
// but don't create it if not.
if (pos != exifData_.end()) {
DataBuf irbBuf(pos->value().size());
pos->value().copy(irbBuf.data(), invalidByteOrder);
irbBuf = Photoshop::setIptcIrb(irbBuf.c_data(), irbBuf.size(), iptcData_);
exifData_.erase(pos);
if (!irbBuf.empty()) {
auto value = Value::create(unsignedByte);
value->read(irbBuf.data(), irbBuf.size(), invalidByteOrder);
Exifdatum iptcDatum(irbKey, value.get());
exifData_.add(iptcDatum);
}
}
} // TiffEncoder::encodeIptc
void TiffEncoder::encodeXmp() {
#ifdef EXV_HAVE_XMP_TOOLKIT
ExifKey xmpKey("Exif.Image.XMLPacket");
// Remove any existing XMP Exif tag
if (auto pos = exifData_.findKey(xmpKey); pos != exifData_.end()) {
xmpKey.setIdx(pos->idx());
exifData_.erase(pos);
}
std::string xmpPacket;
if (xmpData_.usePacket()) {
xmpPacket = xmpData_.xmpPacket();
} else {
if (XmpParser::encode(xmpPacket, xmpData_) > 1) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Failed to encode XMP metadata.\n";
#endif
}
}
if (!xmpPacket.empty()) {
// Set the XMP Exif tag to the new value
auto value = Value::create(unsignedByte);
value->read(reinterpret_cast<const byte*>(xmpPacket.data()), xmpPacket.size(), invalidByteOrder);
Exifdatum xmpDatum(xmpKey, value.get());
exifData_.add(xmpDatum);
}
#endif
} // TiffEncoder::encodeXmp
void TiffEncoder::setDirty(bool flag) {
dirty_ = flag;
setGo(geTraverse, !flag);
}
bool TiffEncoder::dirty() const {
return dirty_ || !exifData_.empty();
}
void TiffEncoder::visitEntry(TiffEntry* object) {
encodeTiffComponent(object);
}
void TiffEncoder::visitDataEntry(TiffDataEntry* object) {
encodeTiffComponent(object);
}
void TiffEncoder::visitImageEntry(TiffImageEntry* object) {
encodeTiffComponent(object);
}
void TiffEncoder::visitSizeEntry(TiffSizeEntry* object) {
encodeTiffComponent(object);
}
void TiffEncoder::visitDirectory(TiffDirectory* /*object*/) {
// Nothing to do
}
void TiffEncoder::visitDirectoryNext(TiffDirectory* object) {
// Update type and count in IFD entries, in case they changed
byte* p = object->start() + 2;
for (auto component : object->components_) {
p += updateDirEntry(p, byteOrder(), component);
}
}
uint32_t TiffEncoder::updateDirEntry(byte* buf, ByteOrder byteOrder, TiffComponent* pTiffComponent) {
auto pTiffEntry = dynamic_cast<const TiffEntryBase*>(pTiffComponent);
if (!pTiffEntry)
return 0;
us2Data(buf + 2, pTiffEntry->tiffType(), byteOrder);
ul2Data(buf + 4, static_cast<uint32_t>(pTiffEntry->count()), byteOrder);
// Move data to offset field, if it fits and is not yet there.
if (pTiffEntry->size() <= 4 && buf + 8 != pTiffEntry->pData()) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Copying data for tag " << pTiffEntry->tag() << " to offset area.\n";
#endif
memset(buf + 8, 0x0, 4);
if (pTiffEntry->size() > 0) {
memmove(buf + 8, pTiffEntry->pData(), pTiffEntry->size());
memset(const_cast<byte*>(pTiffEntry->pData()), 0x0, pTiffEntry->size());
}
}
return 12;
}
void TiffEncoder::visitSubIfd(TiffSubIfd* object) {
encodeTiffComponent(object);
}
void TiffEncoder::visitMnEntry(TiffMnEntry* object) {
// Test is required here as well as in the callback encoder function
if (!object->mn_) {
encodeTiffComponent(object);
} else if (del_) {
// The makernote is made up of decoded tags, delete binary tag
ExifKey key(object->tag(), groupName(object->group()));
auto pos = exifData_.findKey(key);
if (pos != exifData_.end())
exifData_.erase(pos);
}
}
void TiffEncoder::visitIfdMakernote(TiffIfdMakernote* object) {
auto pos = exifData_.findKey(ExifKey("Exif.MakerNote.ByteOrder"));
if (pos != exifData_.end()) {
// Set Makernote byte order
ByteOrder bo = stringToByteOrder(pos->toString());
if (bo != invalidByteOrder && bo != object->byteOrder()) {
object->setByteOrder(bo);
setDirty();
}
if (del_)
exifData_.erase(pos);
}
if (del_) {
// Remove remaining synthesized tags
static constexpr auto synthesizedTags = std::array{
"Exif.MakerNote.Offset",
};
for (auto synthesizedTag : synthesizedTags) {
pos = exifData_.findKey(ExifKey(synthesizedTag));
if (pos != exifData_.end())
exifData_.erase(pos);
}
}
// Modify encoder for Makernote peculiarities, byte order
byteOrder_ = object->byteOrder();
} // TiffEncoder::visitIfdMakernote
void TiffEncoder::visitIfdMakernoteEnd(TiffIfdMakernote* /*object*/) {
// Reset byte order back to that from the c'tor
byteOrder_ = origByteOrder_;
} // TiffEncoder::visitIfdMakernoteEnd
void TiffEncoder::visitBinaryArray(TiffBinaryArray* object) {
if (!object->cfg() || !object->decoded()) {
encodeTiffComponent(object);
}
}
void TiffEncoder::visitBinaryArrayEnd(TiffBinaryArray* object) {
if (!object->cfg() || !object->decoded())
return;
size_t size = object->TiffEntryBase::doSize();
if (size == 0)
return;
if (!object->initialize(pRoot_))
return;
// Re-encrypt buffer if necessary
CryptFct cryptFct = object->cfg()->cryptFct_;
if (cryptFct == &sonyTagDecipher) {
cryptFct = sonyTagEncipher;
}
if (cryptFct) {
const byte* pData = object->pData();
DataBuf buf = cryptFct(object->tag(), pData, size, pRoot_);
if (!buf.empty()) {
pData = buf.c_data();
size = buf.size();
}
if (!object->updOrigDataBuf(pData, size)) {
setDirty();
}
}
}
void TiffEncoder::visitBinaryElement(TiffBinaryElement* object) {
// Temporarily overwrite byte order according to that of the binary element
ByteOrder boOrig = byteOrder_;
if (object->elByteOrder() != invalidByteOrder)
byteOrder_ = object->elByteOrder();
encodeTiffComponent(object);
byteOrder_ = boOrig;
}
bool TiffEncoder::isImageTag(uint16_t tag, IfdId group) const {
return !isNewImage_ && pHeader_->isImageTag(tag, group, pPrimaryGroups_);
}
void TiffEncoder::encodeTiffComponent(TiffEntryBase* object, const Exifdatum* datum) {
auto pos = exifData_.end();
const Exifdatum* ed = datum;
if (!ed) {
// Non-intrusive writing: find matching tag
ExifKey key(object->tag(), groupName(object->group()));
pos = exifData_.findKey(key);
if (pos != exifData_.end()) {
ed = &(*pos);
if (object->idx() != pos->idx()) {
// Try to find exact match (in case of duplicate tags)
auto pos2 = std::find_if(exifData_.begin(), exifData_.end(), FindExifdatum2(object->group(), object->idx()));
if (pos2 != exifData_.end() && pos2->key() == key.key()) {
ed = &(*pos2);
pos = pos2; // make sure we delete the correct tag below
}
}
} else {
setDirty();
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "DELETING " << key << ", idx = " << object->idx() << "\n";
#endif
}
} else {
// For intrusive writing, the index is used to preserve the order of
// duplicate tags
object->idx_ = ed->idx();
}
// Skip encoding image tags of existing TIFF image - they were copied earlier -
// but encode image tags of new images (creation)
if (ed && !isImageTag(object->tag(), object->group())) {
if (auto fct = findEncoderFct_(make_, object->tag(), object->group())) {
// If an encoding function is registered for the tag, use it
std::invoke(fct, *this, object, ed);
} else {
// Else use the encode function at the object (results in a double-dispatch
// to the appropriate encoding function of the encoder.
object->encode(*this, ed);
}
}
if (del_ && pos != exifData_.end()) {
exifData_.erase(pos);
}
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "\n";
#endif
} // TiffEncoder::encodeTiffComponent
void TiffEncoder::encodeBinaryArray(TiffBinaryArray* object, const Exifdatum* datum) {
encodeOffsetEntry(object, datum);
} // TiffEncoder::encodeBinaryArray
void TiffEncoder::encodeBinaryElement(TiffBinaryElement* object, const Exifdatum* datum) {
encodeTiffEntryBase(object, datum);
} // TiffEncoder::encodeArrayElement
void TiffEncoder::encodeDataEntry(TiffDataEntry* object, const Exifdatum* datum) {
encodeOffsetEntry(object, datum);
if (!dirty_ && writeMethod() == wmNonIntrusive) {
if (object->sizeDataArea_ < object->pValue()->sizeDataArea()) {
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "DATAAREA GREW " << key << "\n";
#endif
setDirty();
} else {
// Write the new dataarea, fill with 0x0
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "Writing data area for " << key << "\n";
#endif
DataBuf buf = object->pValue()->dataArea();
if (!buf.empty()) {
std::copy_n(buf.c_data(), buf.size(), object->pDataArea_);
if (object->sizeDataArea_ > buf.size()) {
memset(object->pDataArea_ + buf.size(), 0x0, object->sizeDataArea_ - buf.size());
}
}
}
}
} // TiffEncoder::encodeDataEntry
void TiffEncoder::encodeTiffEntry(TiffEntry* object, const Exifdatum* datum) {
encodeTiffEntryBase(object, datum);
} // TiffEncoder::encodeTiffEntry
void TiffEncoder::encodeImageEntry(TiffImageEntry* object, const Exifdatum* datum) {
encodeOffsetEntry(object, datum);
size_t sizeDataArea = object->pValue()->sizeDataArea();
if (sizeDataArea > 0 && writeMethod() == wmNonIntrusive) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "\t DATAAREA IS SET (NON-INTRUSIVE WRITING)";
#endif
setDirty();
}
if (sizeDataArea > 0 && writeMethod() == wmIntrusive) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "\t DATAAREA IS SET (INTRUSIVE WRITING)";
#endif
// Set pseudo strips (without a data pointer) from the size tag
ExifKey key(object->szTag(), groupName(object->szGroup()));
auto pos = exifData_.findKey(key);
const byte* zero = nullptr;
if (pos == exifData_.end()) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Size tag " << key << " not found. Writing only one strip.\n";
#endif
object->strips_.clear();
object->strips_.emplace_back(zero, sizeDataArea);
} else {
size_t sizeTotal = 0;
object->strips_.clear();
for (size_t i = 0; i < pos->count(); ++i) {
uint32_t len = pos->toUint32(i);
object->strips_.emplace_back(zero, len);
sizeTotal += len;
}
if (sizeTotal != sizeDataArea) {
#ifndef SUPPRESS_WARNINGS
ExifKey key2(object->tag(), groupName(object->group()));
EXV_ERROR << "Sum of all sizes of " << key << " != data size of " << key2 << ". "
<< "This results in an invalid image.\n";
#endif
// Todo: How to fix? Write only one strip?
}
}
}
if (sizeDataArea == 0 && writeMethod() == wmIntrusive) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "\t USE STRIPS FROM SOURCE TREE IMAGE ENTRY";
#endif
// Set strips from source tree
if (pSourceTree_) {
TiffFinder finder(object->tag(), object->group());
pSourceTree_->accept(finder);
if (auto ti = dynamic_cast<const TiffImageEntry*>(finder.result())) {
object->strips_ = ti->strips_;
}
}
#ifndef SUPPRESS_WARNINGS
else {
ExifKey key2(object->tag(), groupName(object->group()));
EXV_WARNING << "No image data to encode " << key2 << ".\n";
}
#endif
}
} // TiffEncoder::encodeImageEntry
void TiffEncoder::encodeMnEntry(TiffMnEntry* object, const Exifdatum* datum) {
// Test is required here as well as in the visit function
if (!object->mn_)
encodeTiffEntryBase(object, datum);
} // TiffEncoder::encodeMnEntry
void TiffEncoder::encodeSizeEntry(TiffSizeEntry* object, const Exifdatum* datum) {
encodeTiffEntryBase(object, datum);
} // TiffEncoder::encodeSizeEntry
void TiffEncoder::encodeSubIfd(TiffSubIfd* object, const Exifdatum* datum) {
encodeOffsetEntry(object, datum);
} // TiffEncoder::encodeSubIfd
void TiffEncoder::encodeTiffEntryBase(TiffEntryBase* object, const Exifdatum* datum) {
#ifdef EXIV2_DEBUG_MESSAGES
bool tooLarge = false;
#endif
if (datum->size() > object->size_) { // value doesn't fit, encode for intrusive writing
setDirty();
#ifdef EXIV2_DEBUG_MESSAGES
tooLarge = true;
#endif
}
object->updateValue(datum->getValue(), byteOrder()); // clones the value
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "UPDATING DATA " << key;
if (tooLarge) {
std::cerr << "\t\t\t ALLOCATED " << std::dec << object->size_ << " BYTES";
}
#endif
}
void TiffEncoder::encodeOffsetEntry(TiffEntryBase* object, const Exifdatum* datum) {
size_t newSize = datum->size();
if (newSize > object->size_) { // value doesn't fit, encode for intrusive writing
setDirty();
object->updateValue(datum->getValue(), byteOrder()); // clones the value
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "UPDATING DATA " << key;
std::cerr << "\t\t\t ALLOCATED " << object->size() << " BYTES";
#endif
} else {
object->setValue(datum->getValue()); // clones the value
#ifdef EXIV2_DEBUG_MESSAGES
ExifKey key(object->tag(), groupName(object->group()));
std::cerr << "NOT UPDATING " << key;
std::cerr << "\t\t\t PRESERVE VALUE DATA";
#endif
}
}
void TiffEncoder::add(TiffComponent* pRootDir, TiffComponent* pSourceDir, uint32_t root) {
writeMethod_ = wmIntrusive;
pSourceTree_ = pSourceDir;
// Ensure that the exifData_ entries are not deleted, to be able to
// iterate over all remaining entries.
del_ = false;
auto posBo = exifData_.end();
for (auto i = exifData_.begin(); i != exifData_.end(); ++i) {
IfdId group = groupId(i->groupName());
// Skip synthesized info tags
if (group == IfdId::mnId) {
if (i->tag() == 0x0002) {
posBo = i;
}
continue;
}
// Skip image tags of existing TIFF image - they were copied earlier -
// but add and encode image tags of new images (creation)
if (isImageTag(i->tag(), group))
continue;
// Assumption is that the corresponding TIFF entry doesn't exist
auto tiffPath = TiffCreator::getPath(i->tag(), group, root);
TiffComponent* tc = pRootDir->addPath(i->tag(), tiffPath, pRootDir);
auto object = dynamic_cast<TiffEntryBase*>(tc);
#ifdef EXIV2_DEBUG_MESSAGES
if (object == 0) {
std::cerr << "Warning: addPath() didn't add an entry for " << i->groupName() << " tag 0x" << std::setw(4)
<< std::setfill('0') << std::hex << i->tag() << "\n";
}
#endif
if (object) {
encodeTiffComponent(object, &(*i));
}
}
/*
What follows is a hack. I can't think of a better way to set
the makernote byte order (and other properties maybe) in the
makernote header during intrusive writing. The thing is that
visit/encodeIfdMakernote is not called in this case and there
can't be an Exif tag which corresponds to this component.
*/
if (posBo == exifData_.end())
return;
TiffFinder finder(0x927c, IfdId::exifId);
pRootDir->accept(finder);
auto te = dynamic_cast<TiffMnEntry*>(finder.result());
if (te) {
auto tim = dynamic_cast<TiffIfdMakernote*>(te->mn_);
if (tim) {
// Set Makernote byte order
ByteOrder bo = stringToByteOrder(posBo->toString());
if (bo != invalidByteOrder)
tim->setByteOrder(bo);
}
}
} // TiffEncoder::add
TiffReader::TiffReader(const byte* pData, size_t size, TiffComponent* pRoot, TiffRwState state) :
pData_(pData), size_(size), pLast_(pData + size), pRoot_(pRoot), origState_(state), mnState_(state) {
pState_ = &origState_;
} // TiffReader::TiffReader
void TiffReader::setOrigState() {
pState_ = &origState_;
}
void TiffReader::setMnState(const TiffRwState* state) {
if (state) {
// invalidByteOrder indicates 'no change'
if (state->byteOrder() == invalidByteOrder) {
mnState_ = TiffRwState{origState_.byteOrder(), state->baseOffset()};
} else {
mnState_ = *state;
}
}
pState_ = &mnState_;
}
ByteOrder TiffReader::byteOrder() const {
return pState_->byteOrder();
}
size_t TiffReader::baseOffset() const {
return pState_->baseOffset();
}
void TiffReader::readDataEntryBase(TiffDataEntryBase* object) {
readTiffEntry(object);
TiffFinder finder(object->szTag(), object->szGroup());
pRoot_->accept(finder);
auto te = dynamic_cast<const TiffEntryBase*>(finder.result());
if (te && te->pValue()) {
object->setStrips(te->pValue(), pData_, size_, baseOffset());
}
}
void TiffReader::visitEntry(TiffEntry* object) {
readTiffEntry(object);
}
void TiffReader::visitDataEntry(TiffDataEntry* object) {
readDataEntryBase(object);
}
void TiffReader::visitImageEntry(TiffImageEntry* object) {
readDataEntryBase(object);
}
void TiffReader::visitSizeEntry(TiffSizeEntry* object) {
readTiffEntry(object);
TiffFinder finder(object->dtTag(), object->dtGroup());
pRoot_->accept(finder);
auto te = dynamic_cast<TiffDataEntryBase*>(finder.result());
if (te && te->pValue()) {
te->setStrips(object->pValue(), pData_, size_, baseOffset());
}
}
bool TiffReader::circularReference(const byte* start, IfdId group) {
if (auto pos = dirList_.find(start); pos != dirList_.end()) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << groupName(group) << " pointer references previously read " << groupName(pos->second)
<< " directory; ignored.\n";
#endif
return true;
}
dirList_[start] = group;
return false;
}
int TiffReader::nextIdx(IfdId group) {
return ++idxSeq_[group];
}
void TiffReader::postProcess() {
setMnState(); // All components to be post-processed must be from the Makernote
postProc_ = true;
for (auto pos : postList_) {
pos->accept(*this);
}
postProc_ = false;
setOrigState();
}
void TiffReader::visitDirectory(TiffDirectory* object) {
const byte* p = object->start();
if (circularReference(object->start(), object->group()))
return;
if (p + 2 > pLast_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << ": IFD exceeds data buffer, cannot read entry count.\n";
#endif
return;
}
const uint16_t n = getUShort(p, byteOrder());
p += 2;
// Sanity check with an "unreasonably" large number
if (n > 256) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << " with " << n
<< " entries considered invalid; not read.\n";
#endif
return;
}
for (uint16_t i = 0; i < n; ++i) {
if (p + 12 > pLast_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << ": IFD entry " << i
<< " lies outside of the data buffer.\n";
#endif
return;
}
uint16_t tag = getUShort(p, byteOrder());
if (auto tc = TiffCreator::create(tag, object->group())) {
tc->setStart(p);
object->addChild(std::move(tc));
} else {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Unable to handle tag " << tag << ".\n";
#endif
}
p += 12;
}
if (object->hasNext()) {
if (p + 4 > pLast_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group())
<< ": IFD exceeds data buffer, cannot read next pointer.\n";
#endif
return;
}
TiffComponent::UniquePtr tc;
uint32_t next = getULong(p, byteOrder());
if (next) {
tc = TiffCreator::create(Tag::next, object->group());
#ifndef SUPPRESS_WARNINGS
if (!tc) {
EXV_WARNING << "Directory " << groupName(object->group()) << " has an unexpected next pointer; ignored.\n";
}
#endif
}
if (tc) {
if (baseOffset() + next > size_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << ": Next pointer is out of bounds; ignored.\n";
#endif
return;
}
tc->setStart(pData_ + baseOffset() + next);
object->addNext(std::move(tc));
}
} // object->hasNext()
} // TiffReader::visitDirectory
void TiffReader::visitSubIfd(TiffSubIfd* object) {
readTiffEntry(object);
if ((object->tiffType() == ttUnsignedLong || object->tiffType() == ttSignedLong || object->tiffType() == ttTiffIfd) &&
object->count() >= 1) {
// Todo: Fix hack
uint32_t maxi = 9;
if (object->group() == IfdId::ifd1Id)
maxi = 1;
for (uint32_t i = 0; i < object->count(); ++i) {
uint32_t offset = getULong(object->pData() + 4 * i, byteOrder());
if (baseOffset() + offset > size_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << " Sub-IFD pointer " << i << " is out of bounds; ignoring it.\n";
#endif
return;
}
if (i >= maxi) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << ": Skipping sub-IFDs beyond the first " << i << ".\n";
#endif
break;
}
// If there are multiple dirs, group is incremented for each
auto td = std::make_unique<TiffDirectory>(object->tag(),
static_cast<IfdId>(static_cast<uint32_t>(object->newGroup_) + i));
td->setStart(pData_ + baseOffset() + offset);
object->addChild(std::move(td));
}
}
#ifndef SUPPRESS_WARNINGS
else {
EXV_WARNING << "Directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << " doesn't look like a sub-IFD.\n";
}
#endif
} // TiffReader::visitSubIfd
void TiffReader::visitMnEntry(TiffMnEntry* object) {
readTiffEntry(object);
// Find camera make
TiffFinder finder(0x010f, IfdId::ifd0Id);
pRoot_->accept(finder);
auto te = dynamic_cast<const TiffEntryBase*>(finder.result());
std::string make;
if (te && te->pValue()) {
make = te->pValue()->toString();
// create concrete makernote, based on make and makernote contents
object->mn_ =
TiffMnCreator::create(object->tag(), object->mnGroup_, make, object->pData_, object->size_, byteOrder());
}
if (object->mn_)
object->mn_->setStart(object->pData());
} // TiffReader::visitMnEntry
void TiffReader::visitIfdMakernote(TiffIfdMakernote* object) {
object->setImageByteOrder(byteOrder()); // set the byte order for the image
if (!object->readHeader(object->start(), pLast_ - object->start(), byteOrder())) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Failed to read " << groupName(object->ifd_.group()) << " IFD Makernote header.\n";
#ifdef EXIV2_DEBUG_MESSAGES
if (pLast_ - object->start() >= 16u) {
hexdump(std::cerr, object->start(), 16u);
}
#endif // EXIV2_DEBUG_MESSAGES
#endif // SUPPRESS_WARNINGS
setGo(geKnownMakernote, false);
return;
}
object->ifd_.setStart(object->start() + object->ifdOffset());
// Modify reader for Makernote peculiarities, byte order and offset
object->mnOffset_ = object->start() - pData_;
auto state = TiffRwState{object->byteOrder(), object->baseOffset()};
setMnState(&state);
} // TiffReader::visitIfdMakernote
void TiffReader::visitIfdMakernoteEnd(TiffIfdMakernote* /*object*/) {
// Reset state (byte order, create function, offset) back to that for the image
setOrigState();
} // TiffReader::visitIfdMakernoteEnd
void TiffReader::readTiffEntry(TiffEntryBase* object) {
try {
byte* p = object->start();
if (p + 12 > pLast_) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Entry in directory " << groupName(object->group())
<< "requests access to memory beyond the data buffer. "
<< "Skipping entry.\n";
#endif
return;
}
// Component already has tag
p += 2;
TiffType tiffType = getUShort(p, byteOrder());
TypeId typeId = toTypeId(tiffType, object->tag(), object->group());
size_t typeSize = TypeInfo::typeSize(typeId);
if (0 == typeSize) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << " has unknown Exif (TIFF) type " << std::dec << tiffType
<< "; setting type size 1.\n";
#endif
typeSize = 1;
}
p += 2;
uint32_t count = getULong(p, byteOrder());
if (count >= 0x10000000) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << " has invalid size " << std::dec << count << "*" << typeSize
<< "; skipping entry.\n";
#endif
return;
}
p += 4;
if (count > std::numeric_limits<size_t>::max() / typeSize) {
throw Error(ErrorCode::kerArithmeticOverflow);
}
size_t size = typeSize * count;
size_t offset = getULong(p, byteOrder());
byte* pData = p;
if (size > 4 && Safe::add<size_t>(baseOffset(), offset) >= size_) {
// #1143
if (object->tag() == 0x2001 && std::string(groupName(object->group())) == "Sony1") {
// This tag is Exif.Sony1.PreviewImage, which refers to a preview image which is
// not stored in the metadata. Instead it is stored at the end of the file, after
// the main image. The value of `size` refers to the size of the preview image, not
// the size of the tag's payload, so we set it to zero here so that we don't attempt
// to read those bytes from the metadata. We currently leave this tag as "undefined",
// although we may attempt to handle it better in the future. More discussion of
// this issue can be found here:
//
// https://github.com/Exiv2/exiv2/issues/2001
// https://github.com/Exiv2/exiv2/pull/2008
// https://github.com/Exiv2/exiv2/pull/2013
typeId = undefined;
size = 0;
} else {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Offset of directory " << groupName(object->group()) << ", entry 0x" << std::setw(4)
<< std::setfill('0') << std::hex << object->tag() << " is out of bounds: "
<< "Offset = 0x" << std::setw(8) << std::setfill('0') << std::hex << offset
<< "; truncating the entry\n";
#endif
}
size = 0;
}
if (size > 4) {
// setting pData to pData_ + baseOffset() + offset can result in pData pointing to invalid memory,
// as offset can be arbitrarily large
if (Safe::add<size_t>(baseOffset(), offset) > static_cast<size_t>(pLast_ - pData_)) {
throw Error(ErrorCode::kerCorruptedMetadata);
}
pData = const_cast<byte*>(pData_) + baseOffset() + offset;
// check for size being invalid
if (size > static_cast<size_t>(pLast_ - pData)) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Upper boundary of data for "
<< "directory " << groupName(object->group()) << ", entry 0x" << std::setw(4) << std::setfill('0')
<< std::hex << object->tag() << " is out of bounds: "
<< "Offset = 0x" << std::setw(8) << std::setfill('0') << std::hex << offset << ", size = " << std::dec
<< size
<< ", exceeds buffer size by "
// cast to make MSVC happy
<< size - static_cast<size_t>(pLast_ - pData) << " Bytes; truncating the entry\n";
#endif
size = 0;
}
}
auto v = Value::create(typeId);
enforce(v != nullptr, ErrorCode::kerCorruptedMetadata);
v->read(pData, size, byteOrder());
object->setValue(std::move(v));
auto d = std::make_shared<DataBuf>();
object->setData(pData, size, std::move(d));
object->setOffset(offset);
object->setIdx(nextIdx(object->group()));
} catch (std::overflow_error&) {
throw Error(ErrorCode::kerCorruptedMetadata); // #562 don't throw std::overflow_error
}
} // TiffReader::readTiffEntry
void TiffReader::visitBinaryArray(TiffBinaryArray* object) {
if (!postProc_) {
// Defer reading children until after all other components are read, but
// since state (offset) is not set during post-processing, read entry here
readTiffEntry(object);
object->iniOrigDataBuf();
postList_.push_back(object);
return;
}
// Check duplicates
TiffFinder finder(object->tag(), object->group());
pRoot_->accept(finder);
if (auto te = dynamic_cast<const TiffEntryBase*>(finder.result())) {
if (te->idx() != object->idx()) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Not decoding duplicate binary array tag 0x" << std::setw(4) << std::setfill('0') << std::hex
<< object->tag() << std::dec << ", group " << groupName(object->group()) << ", idx " << object->idx()
<< "\n";
#endif
object->setDecoded(false);
return;
}
}
if (object->TiffEntryBase::doSize() == 0)
return;
if (!object->initialize(pRoot_))
return;
const ArrayCfg* cfg = object->cfg();
if (!cfg)
return;
if (auto cryptFct = cfg->cryptFct_) {
const byte* pData = object->pData();
size_t size = object->TiffEntryBase::doSize();
auto buf = std::make_shared<DataBuf>(cryptFct(object->tag(), pData, size, pRoot_));
if (!buf->empty())
object->setData(std::move(buf));
}
const ArrayDef* defs = object->def();
const ArrayDef* defsEnd = defs + object->defSize();
const ArrayDef* def = &cfg->elDefaultDef_;
ArrayDef gap = *def;
for (size_t idx = 0; idx < object->TiffEntryBase::doSize();) {
if (defs) {
def = std::find(defs, defsEnd, idx);
if (def == defsEnd) {
if (cfg->concat_) {
// Determine gap-size
const ArrayDef* xdef = defs;
for (; xdef != defsEnd && xdef->idx_ <= idx; ++xdef) {
}
size_t gapSize = 0;
if (xdef != defsEnd && xdef->idx_ > idx) {
gapSize = xdef->idx_ - idx;
} else {
gapSize = object->TiffEntryBase::doSize() - idx;
}
gap.idx_ = idx;
gap.tiffType_ = cfg->elDefaultDef_.tiffType_;
gap.count_ = gapSize / cfg->tagStep();
if (gap.count_ * cfg->tagStep() != gapSize) {
gap.tiffType_ = ttUndefined;
gap.count_ = gapSize;
}
def = &gap;
} else {
def = &cfg->elDefaultDef_;
}
}
}
idx += object->addElement(idx, *def); // idx may be different from def->idx_
}
} // TiffReader::visitBinaryArray
void TiffReader::visitBinaryElement(TiffBinaryElement* object) {
auto pData = object->start();
size_t size = object->TiffEntryBase::doSize();
ByteOrder bo = object->elByteOrder();
if (bo == invalidByteOrder)
bo = byteOrder();
TypeId typeId = toTypeId(object->elDef()->tiffType_, object->tag(), object->group());
auto v = Value::create(typeId);
enforce(v != nullptr, ErrorCode::kerCorruptedMetadata);
v->read(pData, size, bo);
object->setValue(std::move(v));
object->setOffset(0);
object->setIdx(nextIdx(object->group()));
}
} // namespace Exiv2::Internal