You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exiv2/src/jpgimage.cpp

1389 lines
58 KiB
C++

// ***************************************************************** -*- C++ -*-
/*
* Copyright (C) 2004-2021 Exiv2 authors
* This program is part of the Exiv2 distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301 USA.
*/
// *****************************************************************************
// included header files
#include "config.h"
#include "jpgimage.hpp"
#include "tiffimage.hpp"
#include "image_int.hpp"
#include "error.hpp"
#include "futils.hpp"
#include "helper_functions.hpp"
#include "enforce.hpp"
#include "safe_op.hpp"
#ifdef WIN32
#include <windows.h>
#else
#define BYTE char
#define USHORT uint16_t
#define ULONG uint32_t
#endif
#include "fff.h"
// + standard includes
#include <cstdio> // for EOF
#include <cstring>
#include <cassert>
#include <stdexcept>
#include <iostream>
// *****************************************************************************
// class member definitions
namespace Exiv2 {
constexpr byte JpegBase::dht_ = 0xc4;
constexpr byte JpegBase::dqt_ = 0xdb;
constexpr byte JpegBase::dri_ = 0xdd;
constexpr byte JpegBase::sos_ = 0xda;
constexpr byte JpegBase::eoi_ = 0xd9;
constexpr byte JpegBase::app0_ = 0xe0;
constexpr byte JpegBase::app1_ = 0xe1;
constexpr byte JpegBase::app2_ = 0xe2;
constexpr byte JpegBase::app13_ = 0xed;
constexpr byte JpegBase::com_ = 0xfe;
// Start of Frame markers, nondifferential Huffman-coding frames
constexpr byte JpegBase::sof0_ = 0xc0; // start of frame 0, baseline DCT
constexpr byte JpegBase::sof1_ = 0xc1; // start of frame 1, extended sequential DCT, Huffman coding
constexpr byte JpegBase::sof2_ = 0xc2; // start of frame 2, progressive DCT, Huffman coding
constexpr byte JpegBase::sof3_ = 0xc3; // start of frame 3, lossless sequential, Huffman coding
// Start of Frame markers, differential Huffman-coding frames
constexpr byte JpegBase::sof5_ = 0xc5; // start of frame 5, differential sequential DCT, Huffman coding
constexpr byte JpegBase::sof6_ = 0xc6; // start of frame 6, differential progressive DCT, Huffman coding
constexpr byte JpegBase::sof7_ = 0xc7; // start of frame 7, differential lossless, Huffman coding
// Start of Frame markers, nondifferential arithmetic-coding frames
constexpr byte JpegBase::sof9_ = 0xc9; // start of frame 9, extended sequential DCT, arithmetic coding
constexpr byte JpegBase::sof10_ = 0xca; // start of frame 10, progressive DCT, arithmetic coding
constexpr byte JpegBase::sof11_ = 0xcb; // start of frame 11, lossless sequential, arithmetic coding
// Start of Frame markers, differential arithmetic-coding frames
constexpr byte JpegBase::sof13_ = 0xcd; // start of frame 13, differential sequential DCT, arithmetic coding
constexpr byte JpegBase::sof14_ = 0xce; // start of frame 14, progressive DCT, arithmetic coding
constexpr byte JpegBase::sof15_ = 0xcf; // start of frame 15, differential lossless, arithmetic coding
constexpr const char* JpegBase::exifId_ = "Exif\0\0";
constexpr const char* JpegBase::jfifId_ = "JFIF\0";
constexpr const char* JpegBase::xmpId_ = "http://ns.adobe.com/xap/1.0/\0";
constexpr const char* JpegBase::iccId_ = "ICC_PROFILE\0";
constexpr const char* Photoshop::ps3Id_ = "Photoshop 3.0\0";
constexpr std::array<const char*, 4> Photoshop::irbId_{"8BIM", "AgHg", "DCSR", "PHUT"};
constexpr const char* Photoshop::bimId_ = "8BIM"; // deprecated
constexpr uint16_t Photoshop::iptc_ = 0x0404;
constexpr uint16_t Photoshop::preview_ = 0x040c;
// BasicIo::read() with error checking
static void readOrThrow(BasicIo& iIo, byte* buf, long rcount, ErrorCode err) {
const long nread = iIo.read(buf, rcount);
enforce(nread == rcount, err);
enforce(!iIo.error(), err);
}
// BasicIo::seek() with error checking
static void seekOrThrow(BasicIo& iIo, long offset, BasicIo::Position pos, ErrorCode err) {
const int r = iIo.seek(offset, pos);
enforce(r == 0, err);
}
static inline bool inRange(int lo,int value, int hi)
{
return lo<=value && value <= hi;
}
static inline bool inRange2(int value,int lo1,int hi1, int lo2,int hi2)
{
return inRange(lo1,value,hi1) || inRange(lo2,value,hi2);
}
bool Photoshop::isIrb(const byte* pPsData,
long sizePsData)
{
if (sizePsData < 4) return false;
for (auto&& i : irbId_) {
assert(strlen(i) == 4);
if (memcmp(pPsData, i, 4) == 0)
return true;
}
return false;
}
bool Photoshop::valid(const byte* pPsData,
long sizePsData)
{
const byte* record = nullptr;
uint32_t sizeIptc = 0;
uint32_t sizeHdr = 0;
const byte* pCur = pPsData;
const byte* pEnd = pPsData + sizePsData;
int ret = 0;
while (pCur < pEnd
&& 0 == (ret = Photoshop::locateIptcIrb(pCur, static_cast<long>(pEnd - pCur),
&record, &sizeHdr, &sizeIptc))) {
pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1);
}
return ret >= 0;
}
// Todo: Generalised from JpegBase::locateIptcData without really understanding
// the format (in particular the header). So it remains to be confirmed
// if this also makes sense for psTag != Photoshop::iptc
int Photoshop::locateIrb(const byte* pPsData,
long sizePsData,
uint16_t psTag,
const byte** record,
uint32_t *const sizeHdr,
uint32_t *const sizeData)
{
assert(record);
assert(sizeHdr);
assert(sizeData);
// Used for error checking
long position = 0;
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Photoshop::locateIrb: ";
#endif
// Data should follow Photoshop format, if not exit
while (position <= sizePsData - 12 && isIrb(pPsData + position, 4)) {
const byte *hrd = pPsData + position;
position += 4;
uint16_t type = getUShort(pPsData + position, bigEndian);
position += 2;
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "0x" << std::hex << type << std::dec << " ";
#endif
// Pascal string is padded to have an even size (including size byte)
byte psSize = pPsData[position] + 1;
psSize += (psSize & 1);
position += psSize;
if (position + 4 > sizePsData) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Warning: "
<< "Invalid or extended Photoshop IRB\n";
#endif
return -2;
}
uint32_t dataSize = getULong(pPsData + position, bigEndian);
position += 4;
if (dataSize > static_cast<uint32_t>(sizePsData - position)) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Warning: "
<< "Invalid Photoshop IRB data size "
<< dataSize << " or extended Photoshop IRB\n";
#endif
return -2;
}
#ifdef EXIV2_DEBUG_MESSAGES
if ( (dataSize & 1)
&& position + dataSize == static_cast<uint32_t>(sizePsData)) {
std::cerr << "Warning: "
<< "Photoshop IRB data is not padded to even size\n";
}
#endif
if (type == psTag) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "ok\n";
#endif
*sizeData = dataSize;
*sizeHdr = psSize + 10;
*record = hrd;
return 0;
}
// Data size is also padded to be even
position += dataSize + (dataSize & 1);
}
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "pPsData doesn't start with '8BIM'\n";
#endif
if (position < sizePsData) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Warning: "
<< "Invalid or extended Photoshop IRB\n";
#endif
return -2;
}
return 3;
} // Photoshop::locateIrb
int Photoshop::locateIptcIrb(const byte* pPsData,
long sizePsData,
const byte** record,
uint32_t *const sizeHdr,
uint32_t *const sizeData)
{
return locateIrb(pPsData, sizePsData, iptc_,
record, sizeHdr, sizeData);
}
int Photoshop::locatePreviewIrb(const byte* pPsData,
long sizePsData,
const byte** record,
uint32_t *const sizeHdr,
uint32_t *const sizeData)
{
return locateIrb(pPsData, sizePsData, preview_,
record, sizeHdr, sizeData);
}
DataBuf Photoshop::setIptcIrb(const byte* pPsData,
long sizePsData,
const IptcData& iptcData)
{
if (sizePsData > 0) assert(pPsData);
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "IRB block at the beginning of Photoshop::setIptcIrb\n";
if (sizePsData == 0) std::cerr << " None.\n";
else hexdump(std::cerr, pPsData, sizePsData);
#endif
const byte* record = pPsData;
uint32_t sizeIptc = 0;
uint32_t sizeHdr = 0;
DataBuf rc;
// Safe to call with zero psData.size_
if (0 > Photoshop::locateIptcIrb(pPsData, sizePsData,
&record, &sizeHdr, &sizeIptc)) {
return rc;
}
Blob psBlob;
const auto sizeFront = static_cast<uint32_t>(record - pPsData);
// Write data before old record.
if (sizePsData > 0 && sizeFront > 0) {
append(psBlob, pPsData, sizeFront);
}
// Write new iptc record if we have it
DataBuf rawIptc = IptcParser::encode(iptcData);
if (rawIptc.size_ > 0) {
byte tmpBuf[12];
std::memcpy(tmpBuf, Photoshop::irbId_[0], 4);
us2Data(tmpBuf + 4, iptc_, bigEndian);
tmpBuf[6] = 0;
tmpBuf[7] = 0;
ul2Data(tmpBuf + 8, rawIptc.size_, bigEndian);
append(psBlob, tmpBuf, 12);
append(psBlob, rawIptc.pData_, rawIptc.size_);
// Data is padded to be even (but not included in size)
if (rawIptc.size_ & 1) psBlob.push_back(0x00);
}
// Write existing stuff after record,
// skip the current and all remaining IPTC blocks
long pos = sizeFront;
while (0 == Photoshop::locateIptcIrb(pPsData + pos, sizePsData - pos,
&record, &sizeHdr, &sizeIptc)) {
const long newPos = static_cast<long>(record - pPsData);
// Copy data up to the IPTC IRB
if (newPos > pos) {
append(psBlob, pPsData + pos, newPos - pos);
}
// Skip the IPTC IRB
pos = newPos + sizeHdr + sizeIptc + (sizeIptc & 1);
}
if (pos < sizePsData) {
append(psBlob, pPsData + pos, sizePsData - pos);
}
// Data is rounded to be even
if (!psBlob.empty())
rc = DataBuf(&psBlob[0], static_cast<long>(psBlob.size()));
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "IRB block at the end of Photoshop::setIptcIrb\n";
if (rc.size_ == 0) std::cerr << " None.\n";
else hexdump(std::cerr, rc.pData_, rc.size_);
#endif
return rc;
} // Photoshop::setIptcIrb
bool JpegBase::markerHasLength(byte marker) {
return (marker >= sof0_ && marker <= sof15_) ||
(marker >= app0_ && marker <= (app0_ | 0x0F)) ||
marker == dht_ ||
marker == dqt_ ||
marker == dri_ ||
marker == com_ ||
marker == sos_;
}
JpegBase::JpegBase(int type, BasicIo::UniquePtr io, bool create,
const byte initData[], long dataSize)
: Image(type, mdExif | mdIptc | mdXmp | mdComment, std::move(io))
{
if (create) {
initImage(initData, dataSize);
}
}
int JpegBase::initImage(const byte initData[], long dataSize)
{
if (io_->open() != 0) {
return 4;
}
IoCloser closer(*io_);
if (io_->write(initData, dataSize) != dataSize) {
return 4;
}
return 0;
}
byte JpegBase::advanceToMarker(ErrorCode err) const
{
int c = -1;
// Skips potential padding between markers
while ((c=io_->getb()) != 0xff) {
if (c == EOF)
throw Error(err);
}
// Markers can start with any number of 0xff
while ((c=io_->getb()) == 0xff) {
}
if (c == EOF)
throw Error(err);
return static_cast<byte>(c);
}
void JpegBase::readMetadata()
{
int rc = 0; // Todo: this should be the return value
if (io_->open() != 0) throw Error(kerDataSourceOpenFailed, io_->path(), strError());
IoCloser closer(*io_);
// Ensure that this is the correct image type
if (!isThisType(*io_, true)) {
if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData);
throw Error(kerNotAJpeg);
}
clearMetadata();
int search = 6 ; // Exif, ICC, XMP, Comment, IPTC, SOF
Blob psBlob;
bool foundCompletePsData = false;
bool foundExifData = false;
bool foundXmpData = false;
bool foundIccData = false;
// Read section marker
byte marker = advanceToMarker(kerNotAJpeg);
while (marker != sos_ && marker != eoi_ && search > 0) {
// 2-byte buffer for reading the size.
byte sizebuf[2];
uint16_t size = 0;
if (markerHasLength(marker)) {
readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData);
size = getUShort(sizebuf, bigEndian);
// `size` is the size of the segment, including the 2-byte size field
// that we just read.
enforce(size >= 2, kerFailedToReadImageData);
}
// Read the rest of the segment.
DataBuf buf(size);
if (size > 0) {
readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData);
memcpy(buf.pData_, sizebuf, 2);
}
if ( !foundExifData
&& marker == app1_
&& size >= 8 // prevent out-of-bounds read in memcmp on next line
&& memcmp(buf.pData_ + 2, exifId_, 6) == 0) {
ByteOrder bo = ExifParser::decode(exifData_, buf.pData_ + 8, size - 8);
setByteOrder(bo);
if (size > 8 && byteOrder() == invalidByteOrder) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode Exif metadata.\n";
#endif
exifData_.clear();
}
--search;
foundExifData = true;
}
else if ( !foundXmpData
&& marker == app1_
&& size >= 31 // prevent out-of-bounds read in memcmp on next line
&& memcmp(buf.pData_ + 2, xmpId_, 29) == 0) {
xmpPacket_.assign(reinterpret_cast<char*>(buf.pData_ + 31), size - 31);
if (!xmpPacket_.empty() && XmpParser::decode(xmpData_, xmpPacket_)) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode XMP metadata.\n";
#endif
}
--search;
foundXmpData = true;
}
else if ( !foundCompletePsData
&& marker == app13_
&& size >= 16 // prevent out-of-bounds read in memcmp on next line
&& memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Found app13 segment, size = " << size << "\n";
//hexdump(std::cerr, psData.pData_, psData.size_);
#endif
// Append to psBlob
append(psBlob, buf.pData_ + 16, size - 16);
// Check whether psBlob is complete
if (!psBlob.empty() && Photoshop::valid(&psBlob[0], static_cast<long>(psBlob.size()))) {
--search;
foundCompletePsData = true;
}
}
else if (marker == com_ && comment_.empty())
{
// JPEGs can have multiple comments, but for now only read
// the first one (most jpegs only have one anyway). Comments
// are simple single byte ISO-8859-1 strings.
comment_.assign(reinterpret_cast<char*>(buf.pData_ + 2), size - 2);
while ( comment_.length()
&& comment_.at(comment_.length()-1) == '\0') {
comment_.erase(comment_.length()-1);
}
--search;
}
else if ( marker == app2_
&& size >= 13 // prevent out-of-bounds read in memcmp on next line
&& memcmp(buf.pData_ + 2, iccId_,11)==0) {
if (size < 2+14+4) {
rc = 8;
break;
}
// ICC profile
if ( ! foundIccData ) {
foundIccData = true ;
--search ;
}
int chunk = static_cast<int>(buf.pData_[2 + 12]);
int chunks = static_cast<int>(buf.pData_[2 + 13]);
// ICC1v43_2010-12.pdf header is 14 bytes
// header = "ICC_PROFILE\0" (12 bytes)
// chunk/chunks are a single byte
// Spec 7.2 Profile bytes 0-3 size
uint32_t s = getULong(buf.pData_ + (2+14) , bigEndian);
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Found ICC Profile chunk " << chunk
<< " of " << chunks
<< (chunk==1 ? " size: " : "" ) << (chunk==1 ? s : 0)
<< std::endl ;
#endif
// #1286 profile can be padded
long icc_size = size-2-14;
if (chunk==1 && chunks==1) {
enforce(s <= static_cast<uint32_t>(icc_size), kerInvalidIccProfile);
icc_size = s;
}
DataBuf profile(Safe::add(iccProfile_.size_, icc_size));
if ( iccProfile_.size_ ) {
::memcpy(profile.pData_,iccProfile_.pData_,iccProfile_.size_);
}
::memcpy(profile.pData_+iccProfile_.size_, buf.pData_ + (2+14), icc_size);
setIccProfile(profile,chunk==chunks);
}
else if ( pixelHeight_ == 0 && inRange2(marker,sof0_,sof3_,sof5_,sof15_) ) {
// We hit a SOFn (start-of-frame) marker
if (size < 8) {
rc = 7;
break;
}
pixelHeight_ = getUShort(buf.pData_ + 3, bigEndian);
pixelWidth_ = getUShort(buf.pData_ + 5, bigEndian);
if (pixelHeight_ != 0) --search;
}
// Read the beginning of the next segment
try {
marker = advanceToMarker(kerFailedToReadImageData);
} catch (Error&) {
rc = 5;
break;
}
} // while there are segments to process
if (!psBlob.empty()) {
// Find actual IPTC data within the psBlob
Blob iptcBlob;
const byte* record = nullptr;
uint32_t sizeIptc = 0;
uint32_t sizeHdr = 0;
const byte* pCur = &psBlob[0];
const byte* pEnd = pCur + psBlob.size();
while ( pCur < pEnd
&& 0 == Photoshop::locateIptcIrb(pCur, static_cast<long>(pEnd - pCur),
&record, &sizeHdr, &sizeIptc)) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Found IPTC IRB, size = " << sizeIptc << "\n";
#endif
if (sizeIptc) {
append(iptcBlob, record + sizeHdr, sizeIptc);
}
pCur = record + sizeHdr + sizeIptc + (sizeIptc & 1);
}
if (!iptcBlob.empty() &&
IptcParser::decode(iptcData_, &iptcBlob[0], static_cast<uint32_t>(iptcBlob.size()))) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "Failed to decode IPTC metadata.\n";
#endif
iptcData_.clear();
}
} // psBlob.size() > 0
if (rc != 0) {
#ifndef SUPPRESS_WARNINGS
EXV_WARNING << "JPEG format error, rc = " << rc << "\n";
#endif
}
} // JpegBase::readMetadata
#define REPORT_MARKER if ( (option == kpsBasic||option == kpsRecursive) ) \
out << Internal::stringFormat("%8ld | 0xff%02x %-5s", \
io_->tell()-2,marker,nm[marker].c_str())
void JpegBase::printStructure(std::ostream& out, PrintStructureOption option, int depth)
{
if (io_->open() != 0)
throw Error(kerDataSourceOpenFailed, io_->path(), strError());
// Ensure that this is the correct image type
if (!isThisType(*io_, false)) {
if (io_->error() || io_->eof())
throw Error(kerFailedToReadImageData);
throw Error(kerNotAJpeg);
}
bool bPrint = option == kpsBasic || option == kpsRecursive;
std::vector<long> iptcDataSegs;
if (bPrint || option == kpsXMP || option == kpsIccProfile || option == kpsIptcErase) {
// nmonic for markers
std::string nm[256];
nm[0xd8] = "SOI";
nm[0xd9] = "EOI";
nm[0xda] = "SOS";
nm[0xdb] = "DQT";
nm[0xdd] = "DRI";
nm[0xfe] = "COM";
// 0xe0 .. 0xef are APPn
// 0xc0 .. 0xcf are SOFn (except 4)
nm[0xc4] = "DHT";
for (int i = 0; i <= 15; i++) {
char MN[16];
snprintf(MN, sizeof(MN), "APP%d", i);
nm[0xe0 + i] = MN;
if (i != 4) {
snprintf(MN, sizeof(MN), "SOF%d", i);
nm[0xc0 + i] = MN;
}
}
// Container for the signature
bool bExtXMP = false;
// Read section marker
byte marker = advanceToMarker(kerNotAJpeg);
bool done = false;
bool first = true;
while (!done) {
// print marker bytes
if (first && bPrint) {
out << "STRUCTURE OF JPEG FILE: " << io_->path() << std::endl;
out << " address | marker | length | data" << std::endl;
REPORT_MARKER;
}
first = false;
bool bLF = bPrint;
// 2-byte buffer for reading the size.
byte sizebuf[2];
uint16_t size = 0;
if (markerHasLength(marker)) {
readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData);
size = getUShort(sizebuf, bigEndian);
// `size` is the size of the segment, including the 2-byte size field
// that we just read.
enforce(size >= 2, kerFailedToReadImageData);
}
// Read the rest of the segment.
DataBuf buf(size);
if (size > 0) {
assert(size >= 2); // enforced above
readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData);
memcpy(buf.pData_, sizebuf, 2);
}
if (bPrint && markerHasLength(marker))
out << Internal::stringFormat(" | %7d ", size);
// print signature for APPn
if (marker >= app0_ && marker <= (app0_ | 0x0F)) {
assert(markerHasLength(marker));
assert(size >= 2); // Because this marker has a length field.
// http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf p75
const std::string signature =
string_from_unterminated(reinterpret_cast<const char*>(buf.pData_ + 2), size - 2);
// 728 rmills@rmillsmbp:~/gnu/exiv2/ttt $ exiv2 -pS test/data/exiv2-bug922.jpg
// STRUCTURE OF JPEG FILE: test/data/exiv2-bug922.jpg
// address | marker | length | data
// 0 | 0xd8 SOI | 0
// 2 | 0xe1 APP1 | 911 | Exif..MM.*.......%.........#....
// 915 | 0xe1 APP1 | 870 | http://ns.adobe.com/xap/1.0/.<x:
// 1787 | 0xe1 APP1 | 65460 | http://ns.adobe.com/xmp/extensio
if (option == kpsXMP && signature.rfind("http://ns.adobe.com/x", 0) == 0) {
// extract XMP
const char* xmp = reinterpret_cast<const char*>(buf.pData_);
size_t start = 2;
// http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf
// if we find HasExtendedXMP, set the flag and ignore this block
// the first extended block is a copy of the Standard block.
// a robust implementation allows extended blocks to be out of sequence
// we could implement out of sequence with a dictionary of sequence/offset
// and dumping the XMP in a post read operation similar to kpsIptcErase
// for the moment, dumping 'on the fly' is working fine
if (!bExtXMP) {
while (start < size && xmp[start]) {
start++;
}
start++;
if (start < size) {
const std::string xmp_from_start =
string_from_unterminated(&xmp[start], size - start);
if (xmp_from_start.find("HasExtendedXMP", start) != std::string::npos) {
start = size; // ignore this packet, we'll get on the next time around
bExtXMP = true;
}
}
} else {
start = 2 + 35 + 32 + 4 + 4; // Adobe Spec, p19
}
enforce(start <= size, kerInvalidXmpText);
out.write(reinterpret_cast<const char*>(&xmp[start]), size - start);
done = !bExtXMP;
} else if (option == kpsIccProfile && signature.compare(iccId_) == 0) {
// extract ICCProfile
if (size >= 16) {
out.write(reinterpret_cast<const char*>(buf.pData_ + 16), size - 16);
#ifdef EXIV2_DEBUG_MESSAGES
std::cout << "iccProfile size = " << size - 16 << std::endl;
#endif
}
} else if (option == kpsIptcErase && signature == "Photoshop 3.0") {
// delete IPTC data segment from JPEG
iptcDataSegs.push_back(io_->tell() - size);
iptcDataSegs.push_back(size);
} else if (bPrint) {
const size_t start = 2;
const size_t end = size > 34 ? 34 : size;
out << "| " << Internal::binaryToString(makeSlice(buf, start, end));
if (signature == iccId_) {
// extract the chunk information from the buffer
//
// the buffer looks like this in this branch
// ICC_PROFILE\0AB
// where A & B are bytes (the variables chunk & chunks)
//
// We cannot extract the variables A and B from the signature string, as they are beyond the
// null termination (and signature ends there).
// => Read the chunk info from the DataBuf directly
enforce<std::out_of_range>(size >= 16, "Buffer too small to extract chunk information.");
const int chunk = buf.pData_[2 + 12];
const int chunks = buf.pData_[2 + 13];
out << Internal::stringFormat(" chunk %d/%d", chunk, chunks);
}
}
// for MPF: http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/MPF.html
// for FLIR: http://owl.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html
bool bFlir = option == kpsRecursive && marker == (app0_ + 1) && signature == "FLIR";
bool bExif = option == kpsRecursive && marker == (app0_ + 1) && signature == "Exif";
bool bMPF = option == kpsRecursive && marker == (app0_ + 2) && signature == "MPF";
bool bPS = option == kpsRecursive && signature == "Photoshop 3.0";
if (bFlir || bExif || bMPF || bPS) {
// extract Exif data block which is tiff formatted
out << std::endl;
byte* exif = buf.pData_;
uint32_t start = signature == "Exif" ? 8 : 6;
uint32_t max = static_cast<uint32_t>(size) - 1;
// is this an fff block?
if (bFlir) {
start = 2;
bFlir = false;
while (start+3 <= max) {
if (std::strcmp(reinterpret_cast<const char*>(exif + start), "FFF") == 0) {
bFlir = true;
break;
}
start++;
}
}
// there is a header in FLIR, followed by a tiff block
// Hunt down the tiff using brute force
if (bFlir) {
// FLIRFILEHEAD* pFFF = (FLIRFILEHEAD*) (exif+start) ;
while (start < max) {
if (exif[start] == 'I' && exif[start + 1] == 'I')
break;
if (exif[start] == 'M' && exif[start + 1] == 'M')
break;
start++;
}
if (start < max)
std::cout << " FFF start = " << start << std::endl;
// << " index = " << pFFF->dwIndexOff << std::endl;
}
if (bPS) {
IptcData::printStructure(out, makeSlice(exif, 0, size), depth);
} else {
// create a copy on write memio object with the data, then print the structure
BasicIo::UniquePtr p = BasicIo::UniquePtr(new MemIo(exif + start, size - start));
if (start < max)
printTiffStructure(*p, out, option, depth);
}
// restore and clean up
bLF = false;
}
}
// print COM marker
if (bPrint && marker == com_) {
assert(markerHasLength(marker));
assert(size >= 2); // Because this marker has a length field.
// size includes 2 for the two bytes for size!
const size_t n = (size - 2) > 32 ? 32 : size - 2;
// start after the two bytes
out << "| "
<< Internal::binaryToString(
makeSlice(buf, 2, n + 2 /* cannot overflow as n is at most size - 2 */));
}
if (bLF)
out << std::endl;
if (marker != sos_) {
// Read the beginning of the next segment
marker = advanceToMarker(kerNoImageInInputData);
REPORT_MARKER;
}
done |= marker == eoi_ || marker == sos_;
if (done && bPrint)
out << std::endl;
}
}
if (option == kpsIptcErase && !iptcDataSegs.empty()) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cout << "iptc data blocks: " << iptcDataSegs.size() << std::endl;
uint32_t toggle = 0;
for (auto&& iptc : iptcDataSegs) {
std::cout << iptc;
if (toggle++ % 2)
std::cout << std::endl;
else
std::cout << ' ';
}
#endif
size_t count = iptcDataSegs.size();
// figure out which blocks to copy
std::vector<long> pos(count + 2);
pos[0] = 0;
// copy the data that is not iptc
auto it = iptcDataSegs.begin();
for (size_t i = 0; i < count; i++) {
bool bOdd = (i % 2) != 0;
bool bEven = !bOdd;
pos[i + 1] = bEven ? *it : pos[i] + *it;
++it;
}
pos[count + 1] = static_cast<long>(io_->size());
#ifdef EXIV2_DEBUG_MESSAGES
for (size_t i = 0; i < count + 2; i++)
std::cout << pos[i] << " ";
std::cout << std::endl;
#endif
// $ dd bs=1 skip=$((0)) count=$((13164)) if=ETH0138028.jpg of=E1.jpg
// $ dd bs=1 skip=$((49304)) count=2000000 if=ETH0138028.jpg of=E2.jpg
// cat E1.jpg E2.jpg > E.jpg
// exiv2 -pS E.jpg
// binary copy io_ to a temporary file
BasicIo::UniquePtr tempIo(new MemIo);
assert(tempIo.get() != 0);
for (size_t i = 0; i < (count / 2) + 1; i++) {
long start = pos[2 * i] + 2; // step JPG 2 byte marker
if (start == 2)
start = 0; // read the file 2 byte SOI
long length = pos[2 * i + 1] - start;
if (length) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cout << start << ":" << length << std::endl;
#endif
seekOrThrow(*io_, start, BasicIo::beg, kerFailedToReadImageData);
DataBuf buf(length);
readOrThrow(*io_, buf.pData_, buf.size_, kerFailedToReadImageData);
tempIo->write(buf.pData_, buf.size_);
}
}
seekOrThrow(*io_, 0, BasicIo::beg, kerFailedToReadImageData);
io_->transfer(*tempIo); // may throw
seekOrThrow(*io_, 0, BasicIo::beg, kerFailedToReadImageData);
readMetadata();
}
} // JpegBase::printStructure
void JpegBase::writeMetadata()
{
if (io_->open() != 0) {
throw Error(kerDataSourceOpenFailed, io_->path(), strError());
}
IoCloser closer(*io_);
BasicIo::UniquePtr tempIo(new MemIo);
assert (tempIo.get() != 0);
doWriteMetadata(*tempIo); // may throw
io_->close();
io_->transfer(*tempIo); // may throw
} // JpegBase::writeMetadata
void JpegBase::doWriteMetadata(BasicIo& outIo)
{
if (!io_->isopen())
throw Error(kerInputDataReadFailed);
if (!outIo.isopen())
throw Error(kerImageWriteFailed);
// Ensure that this is the correct image type
if (!isThisType(*io_, true)) {
if (io_->error() || io_->eof())
throw Error(kerInputDataReadFailed);
throw Error(kerNoImageInInputData);
}
// Used to initialize search variables such as skipCom.
static const size_t notfound = std::numeric_limits<size_t>::max();
const long seek = io_->tell();
size_t count = 0;
size_t search = 0;
size_t insertPos = 0;
size_t comPos = 0;
size_t skipApp1Exif = notfound;
size_t skipApp1Xmp = notfound;
bool foundCompletePsData = false;
bool foundIccData = false;
std::vector<size_t> skipApp13Ps3;
std::vector<size_t> skipApp2Icc;
size_t skipCom = notfound;
Blob psBlob;
DataBuf rawExif;
xmpData().usePacket(writeXmpFromPacket());
// Write image header
if (writeHeader(outIo))
throw Error(kerImageWriteFailed);
// Read section marker
byte marker = advanceToMarker(kerNoImageInInputData);
// First find segments of interest. Normally app0 is first and we want
// to insert after it. But if app0 comes after com, app1 and app13 then
// don't bother.
while (marker != sos_ && marker != eoi_ && search < 6) {
// 2-byte buffer for reading the size.
byte sizebuf[2];
uint16_t size = 0;
if (markerHasLength(marker)) {
readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData);
size = getUShort(sizebuf, bigEndian);
// `size` is the size of the segment, including the 2-byte size field
// that we just read.
enforce(size >= 2, kerFailedToReadImageData);
}
// Read the rest of the segment.
DataBuf buf(size);
if (size > 0) {
assert(size >= 2); // enforced above
readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData);
memcpy(buf.pData_, sizebuf, 2);
}
if (marker == app0_) {
assert(markerHasLength(marker));
assert(size >= 2); // Because this marker has a length field.
insertPos = count + 1;
} else if (skipApp1Exif == notfound && marker == app1_ && memcmp(buf.pData_ + 2, exifId_, 6) == 0) {
enforce(size >= 8, kerNoImageInInputData);
skipApp1Exif = count;
++search;
rawExif.alloc(size - 8);
memcpy(rawExif.pData_, buf.pData_ + 8, size - 8);
} else if (skipApp1Xmp == notfound && marker == app1_ && memcmp(buf.pData_ + 2, xmpId_, 29) == 0) {
enforce(size >= 31, kerNoImageInInputData);
skipApp1Xmp = count;
++search;
} else if (marker == app2_ && memcmp(buf.pData_ + 2, iccId_, 11) == 0) {
enforce(size >= 31, kerNoImageInInputData);
skipApp2Icc.push_back(count);
if (!foundIccData) {
++search;
foundIccData = true;
}
} else if (!foundCompletePsData && marker == app13_ && memcmp(buf.pData_ + 2, Photoshop::ps3Id_, 14) == 0) {
#ifdef EXIV2_DEBUG_MESSAGES
std::cerr << "Found APP13 Photoshop PS3 segment\n";
#endif
enforce(size >= 16, kerNoImageInInputData);
skipApp13Ps3.push_back(count);
// Append to psBlob
append(psBlob, buf.pData_ + 16, size - 16);
// Check whether psBlob is complete
if (!psBlob.empty() && Photoshop::valid(&psBlob[0], static_cast<long>(psBlob.size()))) {
foundCompletePsData = true;
}
} else if (marker == com_ && skipCom == notfound) {
assert(markerHasLength(marker));
assert(size >= 2); // Because this marker has a length field.
// Jpegs can have multiple comments, but for now only handle
// the first one (most jpegs only have one anyway).
skipCom = count;
++search;
}
// As in jpeg-6b/wrjpgcom.c:
// We will insert the new comment marker just before SOFn.
// This (a) causes the new comment to appear after, rather than before,
// existing comments; and (b) ensures that comments come after any JFIF
// or JFXX markers, as required by the JFIF specification.
if (comPos == 0 && inRange2(marker, sof0_, sof3_, sof5_, sof15_)) {
comPos = count;
++search;
}
marker = advanceToMarker(kerNoImageInInputData);
++count;
}
if (!foundCompletePsData && !psBlob.empty())
throw Error(kerNoImageInInputData);
search += skipApp13Ps3.size() + skipApp2Icc.size();
if (comPos == 0) {
if (marker == eoi_)
comPos = count;
else
comPos = insertPos;
++search;
}
if (exifData_.count() > 0)
++search;
if (!writeXmpFromPacket() && xmpData_.count() > 0)
++search;
if (writeXmpFromPacket() && !xmpPacket_.empty())
++search;
if (foundCompletePsData || iptcData_.count() > 0)
++search;
if (!comment_.empty())
++search;
seekOrThrow(*io_, seek, BasicIo::beg, kerNoImageInInputData);
count = 0;
marker = advanceToMarker(kerNoImageInInputData);
// To simplify this a bit, new segments are inserts at either the start
// or right after app0. This is standard in most jpegs, but has the
// potential to change segment ordering (which is allowed).
// Segments are erased if there is no assigned metadata.
while (marker != sos_ && search > 0) {
// 2-byte buffer for reading the size.
byte sizebuf[2];
uint16_t size = 0;
if (markerHasLength(marker)) {
readOrThrow(*io_, sizebuf, 2, kerFailedToReadImageData);
size = getUShort(sizebuf, bigEndian);
// `size` is the size of the segment, including the 2-byte size field
// that we just read.
enforce(size >= 2, kerFailedToReadImageData);
}
// Read the rest of the segment.
DataBuf buf(size);
if (size > 0) {
assert(size >= 2); // enforced above
readOrThrow(*io_, buf.pData_ + 2, size - 2, kerFailedToReadImageData);
memcpy(buf.pData_, sizebuf, 2);
}
if (insertPos == count) {
// Write Exif data first so that - if there is no app0 - we
// create "Exif images" according to the Exif standard.
if (exifData_.count() > 0) {
Blob blob;
ByteOrder bo = byteOrder();
if (bo == invalidByteOrder) {
bo = littleEndian;
setByteOrder(bo);
}
WriteMethod wm = ExifParser::encode(blob, rawExif.pData_, rawExif.size_, bo, exifData_);
const byte* pExifData = rawExif.pData_;
size_t exifSize = rawExif.size_;
if (wm == wmIntrusive) {
pExifData = !blob.empty() ? &blob[0] : nullptr;
exifSize = blob.size();
}
if (exifSize > 0) {
byte tmpBuf[10];
// Write APP1 marker, size of APP1 field, Exif id and Exif data
tmpBuf[0] = 0xff;
tmpBuf[1] = app1_;
if (exifSize > 0xffff - 8)
throw Error(kerTooLargeJpegSegment, "Exif");
us2Data(tmpBuf + 2, static_cast<uint16_t>(exifSize + 8), bigEndian);
std::memcpy(tmpBuf + 4, exifId_, 6);
if (outIo.write(tmpBuf, 10) != 10)
throw Error(kerImageWriteFailed);
// Write new Exif data buffer
if (outIo.write(pExifData, static_cast<long>(exifSize)) != static_cast<long>(exifSize))
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
--search;
}
}
if (!writeXmpFromPacket()) {
if (XmpParser::encode(xmpPacket_, xmpData_,
XmpParser::useCompactFormat | XmpParser::omitAllFormatting) > 1) {
#ifndef SUPPRESS_WARNINGS
EXV_ERROR << "Failed to encode XMP metadata.\n";
#endif
}
}
if (!xmpPacket_.empty()) {
byte tmpBuf[33];
// Write APP1 marker, size of APP1 field, XMP id and XMP packet
tmpBuf[0] = 0xff;
tmpBuf[1] = app1_;
if (xmpPacket_.size() > 0xffff - 31)
throw Error(kerTooLargeJpegSegment, "XMP");
us2Data(tmpBuf + 2, static_cast<uint16_t>(xmpPacket_.size() + 31), bigEndian);
std::memcpy(tmpBuf + 4, xmpId_, 29);
if (outIo.write(tmpBuf, 33) != 33)
throw Error(kerImageWriteFailed);
// Write new XMP packet
if (outIo.write(reinterpret_cast<const byte*>(xmpPacket_.data()),
static_cast<long>(xmpPacket_.size())) != static_cast<long>(xmpPacket_.size()))
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
--search;
}
if (iccProfileDefined()) {
byte tmpBuf[4];
// Write APP2 marker, size of APP2 field, and IccProfile
// See comments in readMetadata() about the ICC embedding specification
tmpBuf[0] = 0xff;
tmpBuf[1] = app2_;
const long chunk_size = 256 * 256 - 40; // leave bytes for marker, header and padding
long size = iccProfile_.size_;
assert(size > 0); // Because iccProfileDefined() == true
if (size >= 255 * chunk_size)
throw Error(kerTooLargeJpegSegment, "IccProfile");
const long chunks = 1 + (size - 1) / chunk_size;
assert(chunks <= 255); // Because size < 255 * chunk_size
for (long chunk = 0; chunk < chunks; chunk++) {
long bytes = size > chunk_size ? chunk_size : size; // bytes to write
size -= bytes;
// write JPEG marker (2 bytes)
if (outIo.write(tmpBuf, 2) != 2)
throw Error(kerImageWriteFailed); // JPEG Marker
// write length (2 bytes). length includes the 2 bytes for the length
us2Data(tmpBuf + 2, static_cast<uint16_t>(2 + 14 + bytes), bigEndian);
if (outIo.write(tmpBuf + 2, 2) != 2)
throw Error(kerImageWriteFailed); // JPEG Length
// write the ICC_PROFILE header (14 bytes)
uint8_t pad[2];
pad[0] = static_cast<uint8_t>(chunk + 1);
pad[1] = static_cast<uint8_t>(chunks);
outIo.write((const byte*)iccId_, 12);
outIo.write((const byte*)pad, 2);
if (outIo.write(iccProfile_.pData_ + (chunk * chunk_size), bytes) != bytes)
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
}
--search;
}
if (foundCompletePsData || iptcData_.count() > 0) {
// Set the new IPTC IRB, keeps existing IRBs but removes the
// IPTC block if there is no new IPTC data to write
DataBuf newPsData = Photoshop::setIptcIrb(!psBlob.empty() ? &psBlob[0] : nullptr,
static_cast<long>(psBlob.size()), iptcData_);
const long maxChunkSize = 0xffff - 16;
const byte* chunkStart = newPsData.pData_;
const byte* chunkEnd = chunkStart + newPsData.size_;
while (chunkStart < chunkEnd) {
// Determine size of next chunk
long chunkSize = static_cast<long>(chunkEnd - chunkStart);
if (chunkSize > maxChunkSize) {
chunkSize = maxChunkSize;
// Don't break at a valid IRB boundary
const long writtenSize = static_cast<long>(chunkStart - newPsData.pData_);
if (Photoshop::valid(newPsData.pData_, writtenSize + chunkSize)) {
// Since an IRB has minimum size 12,
// (chunkSize - 8) can't be also a IRB boundary
chunkSize -= 8;
}
}
// Write APP13 marker, chunk size, and ps3Id
byte tmpBuf[18];
tmpBuf[0] = 0xff;
tmpBuf[1] = app13_;
us2Data(tmpBuf + 2, static_cast<uint16_t>(chunkSize + 16), bigEndian);
std::memcpy(tmpBuf + 4, Photoshop::ps3Id_, 14);
if (outIo.write(tmpBuf, 18) != 18)
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
// Write next chunk of the Photoshop IRB data buffer
if (outIo.write(chunkStart, chunkSize) != chunkSize)
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
chunkStart += chunkSize;
}
--search;
}
}
if (comPos == count) {
if (!comment_.empty()) {
byte tmpBuf[4];
// Write COM marker, size of comment, and string
tmpBuf[0] = 0xff;
tmpBuf[1] = com_;
if (comment_.length() > 0xffff - 3)
throw Error(kerTooLargeJpegSegment, "JPEG comment");
us2Data(tmpBuf + 2, static_cast<uint16_t>(comment_.length() + 3), bigEndian);
if (outIo.write(tmpBuf, 4) != 4)
throw Error(kerImageWriteFailed);
if (outIo.write(reinterpret_cast<byte*>(const_cast<char*>(comment_.data())),
static_cast<long>(comment_.length())) != static_cast<long>(comment_.length()))
throw Error(kerImageWriteFailed);
if (outIo.putb(0) == EOF)
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
--search;
}
--search;
}
if (marker == eoi_) {
break;
}
if (skipApp1Exif == count || skipApp1Xmp == count ||
std::find(skipApp13Ps3.begin(), skipApp13Ps3.end(), count) != skipApp13Ps3.end() ||
std::find(skipApp2Icc.begin(), skipApp2Icc.end(), count) != skipApp2Icc.end() || skipCom == count) {
--search;
} else {
byte tmpBuf[2];
// Write marker and a copy of the segment.
tmpBuf[0] = 0xff;
tmpBuf[1] = marker;
if (outIo.write(tmpBuf, 2) != 2)
throw Error(kerImageWriteFailed);
if (outIo.write(buf.pData_, size) != size)
throw Error(kerImageWriteFailed);
if (outIo.error())
throw Error(kerImageWriteFailed);
}
// Next marker
marker = advanceToMarker(kerNoImageInInputData);
++count;
}
// Populate the fake data, only make sense for remoteio, httpio and sshio.
// it avoids allocating memory for parts of the file that contain image-date.
io_->populateFakeData();
// Write the final marker, then copy rest of the Io.
byte tmpBuf[2];
tmpBuf[0] = 0xff;
tmpBuf[1] = marker;
if (outIo.write(tmpBuf, 2) != 2)
throw Error(kerImageWriteFailed);
DataBuf buf(4096);
long readSize = 0;
while ((readSize = io_->read(buf.pData_, buf.size_))) {
if (outIo.write(buf.pData_, readSize) != readSize)
throw Error(kerImageWriteFailed);
}
if (outIo.error())
throw Error(kerImageWriteFailed);
} // JpegBase::doWriteMetadata
const byte JpegImage::soi_ = 0xd8;
const byte JpegImage::blank_[] = {
0xFF,0xD8,0xFF,0xDB,0x00,0x84,0x00,0x10,0x0B,0x0B,0x0B,0x0C,0x0B,0x10,0x0C,0x0C,
0x10,0x17,0x0F,0x0D,0x0F,0x17,0x1B,0x14,0x10,0x10,0x14,0x1B,0x1F,0x17,0x17,0x17,
0x17,0x17,0x1F,0x1E,0x17,0x1A,0x1A,0x1A,0x1A,0x17,0x1E,0x1E,0x23,0x25,0x27,0x25,
0x23,0x1E,0x2F,0x2F,0x33,0x33,0x2F,0x2F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x01,0x11,0x0F,0x0F,0x11,0x13,0x11,0x15,0x12,
0x12,0x15,0x14,0x11,0x14,0x11,0x14,0x1A,0x14,0x16,0x16,0x14,0x1A,0x26,0x1A,0x1A,
0x1C,0x1A,0x1A,0x26,0x30,0x23,0x1E,0x1E,0x1E,0x1E,0x23,0x30,0x2B,0x2E,0x27,0x27,
0x27,0x2E,0x2B,0x35,0x35,0x30,0x30,0x35,0x35,0x40,0x40,0x3F,0x40,0x40,0x40,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0xFF,0xC0,0x00,0x11,0x08,0x00,0x01,0x00,
0x01,0x03,0x01,0x22,0x00,0x02,0x11,0x01,0x03,0x11,0x01,0xFF,0xC4,0x00,0x4B,0x00,
0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x07,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xDA,0x00,0x0C,0x03,0x01,0x00,0x02,
0x11,0x03,0x11,0x00,0x3F,0x00,0xA0,0x00,0x0F,0xFF,0xD9 };
JpegImage::JpegImage(BasicIo::UniquePtr io, bool create)
: JpegBase(ImageType::jpeg, std::move(io), create, blank_, sizeof(blank_))
{
}
std::string JpegImage::mimeType() const
{
return "image/jpeg";
}
int JpegImage::writeHeader(BasicIo& outIo) const
{
// Jpeg header
byte tmpBuf[2];
tmpBuf[0] = 0xff;
tmpBuf[1] = soi_;
if (outIo.write(tmpBuf, 2) != 2) return 4;
if (outIo.error()) return 4;
return 0;
}
bool JpegImage::isThisType(BasicIo& iIo, bool advance) const
{
return isJpegType(iIo, advance);
}
Image::UniquePtr newJpegInstance(BasicIo::UniquePtr io, bool create)
{
Image::UniquePtr image(new JpegImage(std::move(io), create));
if (!image->good()) {
image.reset();
}
return image;
}
bool isJpegType(BasicIo& iIo, bool advance)
{
bool result = true;
byte tmpBuf[2];
iIo.read(tmpBuf, 2);
if (iIo.error() || iIo.eof()) return false;
if (0xff != tmpBuf[0] || JpegImage::soi_ != tmpBuf[1]) {
result = false;
}
if (!advance || !result ) iIo.seek(-2, BasicIo::cur);
return result;
}
const char ExvImage::exiv2Id_[] = "Exiv2";
const byte ExvImage::blank_[] = { 0xff,0x01,'E','x','i','v','2',0xff,0xd9 };
ExvImage::ExvImage(BasicIo::UniquePtr io, bool create)
: JpegBase(ImageType::exv, std::move(io), create, blank_, sizeof(blank_))
{
}
std::string ExvImage::mimeType() const
{
return "image/x-exv";
}
int ExvImage::writeHeader(BasicIo& outIo) const
{
// Exv header
byte tmpBuf[7];
tmpBuf[0] = 0xff;
tmpBuf[1] = 0x01;
std::memcpy(tmpBuf + 2, exiv2Id_, 5);
if (outIo.write(tmpBuf, 7) != 7) return 4;
if (outIo.error()) return 4;
return 0;
}
bool ExvImage::isThisType(BasicIo& iIo, bool advance) const
{
return isExvType(iIo, advance);
}
Image::UniquePtr newExvInstance(BasicIo::UniquePtr io, bool create)
{
Image::UniquePtr image;
image = Image::UniquePtr(new ExvImage(std::move(io), create));
if (!image->good()) image.reset();
return image;
}
bool isExvType(BasicIo& iIo, bool advance)
{
bool result = true;
byte tmpBuf[7];
iIo.read(tmpBuf, 7);
if (iIo.error() || iIo.eof()) return false;
if ( 0xff != tmpBuf[0] || 0x01 != tmpBuf[1]
|| memcmp(tmpBuf + 2, ExvImage::exiv2Id_, 5) != 0) {
result = false;
}
if (!advance || !result) iIo.seek(-7, BasicIo::cur);
return result;
}
} // namespace Exiv2